(RBM)

MR

£
(]
=
=
O
M.
R
Q
el
©
m
@
E
-
I-
©
@
o
x
()
o
o
x

IR SIGIMIA

MR SIE

M

=

[ENIEREIENIE

s

—
o

L e e =

=

S

A

VIS SIEIE SIENA

M

SR
=

ENEE

=l

SIElA SleMiA SIEMA

SlEMIS

SIE]

ElENR EIEME EIEME
SIEME ElENME SIENME

Xerox Data Systems XEROX

701 South Aviation Boulevard
El Segundo, California 90245
213 679-4511

Real-Time Batch Monitor (RBM)

Sigma 2/3 Computers

Real-Time and Batch Processing
Reference Manual

90 10 37E

March 1971

Price: $6.50

© 1968, 1969, 1970, 1971, Xerox Corporation Printed in U.S.A.

REVISION

This publication is a major revision of the Xerox Real-Time Batch Monitor (RBM)/RT, BP Reference Manual for
Sigma 2/3 computers, Publication Number 90 10 37D (dated August 1970). Primary technical changes made to the
text are for the DOO version of RBM. Other changes are a heavy reorganization of the text for improved reader
referencing. All technical changes from that of the previous manual are indicated by a vertical line in the margin
of the page. Organizational changes in the text are not so indicated.

RELATED PUBLICATIONS

Title Publication No.
Xerox Sigma 2 Computer/Reference Manual 90 09 64
Xerox Sigma 3 Computer/Reference Manual 90 15 92
Xerox Real-Time Batch Monitor (RBM)/OPS Reference Manual 90 15 55
Xerox Basic FORTRAN and Basic FORTRAN 1V/LN, OPS Reference Manual 90 09 67
Xerox FORTRAN Library/System Technical Manual 90 10 36
Xerox Basic FORTRAN IV/OPS Reference Manual 90 15 25
Xerox Extended Symbol/LN OPS Reference Manual 90 10 52

Manual Type Codes: BP - batch processing, LN - language, OPS - operations, RBP - remote batch processing,
RT - real-time, SM - system management, TS - time-sharing, UT - utilities.

The specifications of the software system described in this publication are subject to change without notice. The availability or performance of some features may
depend on a specific configuration of equipment such as additional tape units or larger memory. Customers should consult their XDS sales representative for details.

RBM Characteristics

Hardware Requirements
RBM Subsystems

RBM Terms and Processes

Job Contro!l Processor (JCP)
Monitor Control Commands

GLOSSARY

INTRODUCTION

CONTENTS

vili

—

Resident Section

Nonresident Section

System Environment

Foreground (High-Level Priority Response)
Background (Low-Level, No Priority)

Secondary Storage Management
Overlay Capabilities

Checkpoint/Restart
Public Library

Reentrant Routines

Accounting and Elapsed Time
System Initialization

Language Translators

Service Programs

Miscellaneous

Task

Program

Foreground

Background

Job

Job Step

Background Task

Monitor Service Routines

Floating Accumulator

RBM Control Task

Nonresident Foreground

Compressed RAD Files

CONTROL COMMANDS

ABS

ASSIGN

ATTEND

C:

CC

DEFINE

EOD

FIN

FSKIP, FBACK, RSKIP, RBACK
HEX

JOB

JOBC

LIMIT

MESSAGE

PAUSE

WOWOOMOMONNNNNNOCCCOCOCOUOMBRMDAMRADMWONN— — ——

PMD

PURGE

REL

REWIND

TEMP

UNLOAD

WEOF

XEQ

XED

Processor Control Commands

Extended Symbol Control Command
Format

Basic FORTRAN 1V Control Command
Format

RBM/Processor Interface

GO and OV Files

OPERATOR COMMUNICATIONS

System Communication

1I/O Recovery Procedure

Monitor Message

Operator Control

Unsolicited Key-Ins

BL oplb = DFN[,P]
BL oplb = oplb[,P]

BR [df] nn

BT dn,track

C: TCB[,code]

CcC

CP

DB xxxx,yyyy
DE

DF xxxx,yyyy

DM xxxx,yyyy

D [T]MM/DD[/Y Y][,HRMN]
D [TJmMM,DD[, YY][;HR,MN]
DR dn xxxx,yyyy

F

FG[,S]

FL oplb = DFN[,P]
FL oplb = oplb [,P]

FR [dl'] nn
H

KP

L ar,dn [,wp]

M ar,dn

Q name

S

SY [,S)

T HRMN

T HR,MN

uL

w

X

z

14
15
15
15
15
16
16
16
16
16

18
18
18

20

20
20
20
24
24
24
24
24
24
24
24
24
24
24
24
24
24
25
25
25
25
25
25
25
25
25
25
25
25
25
26
26
26
26
26
26
26

cos
1

4,

MONITOR SERVICE ROUTINES

Branching to Service Routines

Service Routines

M:IOEX

M:READ

M:WRITE

M:CTRL

M:DATIME

M:TERM

M:ABORT

M:SAVE

M:EXIT

M:HEXIN

M:INHEX

M:CKREST

M:LOAD

M:OPEN

M:CLOSE

M:DKEYS

M:WAIT

M:SEGLD

M:DEFINE

M:ASSIGN

M:RES

M:POP

M:OPFILE

M:RSVP

M:DOW

M:COC

1/O OPERATIONS

Byte-Oriented

I/O Initiation
End Action

Logical/Physical Device Equivalence
RAD Files

Sequential Files
Random Files

RAD File Management

REAL-TIME PROGRAMMING

Foreground Programs

Resident Foreground Program

Semiresident Foreground Program

Nonresident Foreground Programs
Monitor Tasks

Power On Task

Power Off Task

Machine Fault Task

Protection Violation Task

Multiply/Divide Tasks

Input/Output Tasks

Control Panel Task

RBM Control Task

Scheduling Resident Foreground Tasks
Loading Foreground Programs

Loading Resident Foreground Programs
Loading Nonresident Foreground Programs

27

27
27
27
31
36
39
40
41
41
42
42
42
43
43

45
45
46
46
46
47
48
50
50
51
51
52
53

56

56
56
56
57
57
57
58

3

LSRR ROR RN

61
61
62
62
62
62
62
62
63
65
65

Foreground Initialization

Task Control Block Functions

Foreground Priority Levels and I/O Priority

AlIO Receivers

Checkpointing the Background

Foreground Coding Procedures

OVERLAY LOADER

Overlay Cluster Organization

Core Layout During Loading
Overlay Loader Operational Labels
Map

Calling Overlay Loader

Control Command Format

Control Command Repertoire

BLOCK

LIB

MS ML MP

TCB

ROOT

LD

LB

INCLUDE

MD

SEG

PUBLIB

END

Loader Error Messages

RAD EDITOR

Introduction

Permanent RAD/Disk Pack Area Organization __

Data Files

Library Files

RAD Editor Operational Labels
Calling RAD Editor

Control Command Format

Control Command Repertoire

ADD

DELETE

FCOPY

LADD

LREPLACE

LDELETE

LCOPY

LSQUEEZE

MAP

DUMP

SAVE

RESTORE

SQUEEZE

CLEAR

TRACKS

END

RAD Editor Error Messages

66

68
70
70
71

72

72
74
74
75
77
78
78
78
78
79
79
80
80
80
81
81
81
82
82
82

84
84
84
86
86
86
86
86
87
88
88
88
89
89
89
89
89
90
90

90
90
90
90

UTILITY

Introduction

Utility Program Organization
Input/Output Error Messages
Control Routine Operational Labels

Calling Utility
Control Command Format

Control Function Commands

FBACK

FSKIP

MESSAGE

PAUSE

PRESTORE

REWIND

RBACK

RSKIP

UNLOAD

END

WEOF

ASSIGN

COPY Routine

COPY Operational Labels

COPY Operating Characteristics
Calling COPY

COPY Control Commands

OPLBS

COPY

VERIFY

DUMP Routine

DUMP Operational Labels

DUMP Operating Characteristics
Calling DUMP

DUMP Control Command

DUMP

Object Module Editor Routine

Object Module Editor Operational Labels

Object Module Editor Operating
Characteristics

Calling Object Module Editor

Object Module Editor Control Commands

LIST

MODIFY

INSERT

Record Editor Routine

Record Editor Operational Labels

Record Editor Operating Characteristics

Calling Record Editor

Record Editor Control Commands
LIST

MODIFY

DELETE

INSERT

CHANGE

Sequence Editor Routine

Sequence Editor Operational Labels
Sequence Editor Operating

Characteristics

Calling Sequence Editor

Sequence Editor Control Commands
IDENT

DELETE

94

94
94
95
95
95
96
96
96
96
96
96
97
97
97
97
97
97
97
97
97
98
98
98
98
98
99
99
99
100
100
100
100
100
100
100

101
101
102
102
102
102
102
102
102
103
103
103
103
103
103
104
104
104

104
105
105
105
105

SUPPRESS

SEQUENCE

Utility Error Messages

10. PREPARING THE PROGRAM DECK

Extended Symbol Examples

Assemble Source Program, Listing Output

and Binary Output

Assemble In Batch Mode, Listing Output
and Binary Output with Symbol

Cross-Reference

Assemble, Load, and Go from User Defined

QV File, Listing Output

Assemble Source Program, Listing Output,

Load and Go

Basic FORTRAN IV Examples

Compile Multiple Programs

Compile, Listing Output, Load and Go
Compile and Execute Foreground Program

Segmented Program Examples

Assemble Segmented Background Program,

Load and Go

Load and Execute Multiple Object

Modules

RAD Editor Examples

Build Public Library

Load Routines in User Library
Utility Example

Create A Control Command File

11. SYSTEM GENERATION AND SYSTEM

LOAD

Introduction

SYSGEN

Initial Core Allocation

Minimum Configuration

Optional Routines
Core Memory Allocation

RAD Allocation

File Control Table Allocation
Operational Label Assignments
Input Parameters

SYSGEN Output

SYSLOAD

System Load

ALL Option

UPD Option

Initial Loading of System Processors
Public Library Creation or Updating

Resident Foreground Creation or
Updating

Nonresident Foreground Creation or

Updating

System Processors and Library Creation

SYSLOAD Alarms

Rebooting the System from RAD

106
106
106

112
112

112

112
112

113
113
113
113
114
114

114

115
115
115
116
116
116

17

117
17
17
117
117
118
118
21
122
122
128
128
128
128
131
132
132

133

133
133
133
133

12. DEBUG

Introduction

General Description

Foreground User Restrictions
RBM and Foreground User's Interface
Memory Requirement and Insertion Block
Definition

Debug Control

Debug Commands

OMWZTRATAIXV =T

Debug Error Messages

INDEX

vi

APPENDIXES
SIGMA 2/3 STANDARD OBJECT LANGUAGE

Introduction

Description of Object Modules
General Description

Binary Object Record Format
Format of Record Header

Load Item Format

Format of Load Item Control (Header)
Word

Summary of Load Item Formats
SYSTEM ZERO TABLE AND CONSTANTS

RBM SYSTEM ABORT CODES

Overlay Loader Abort Codes

Loader [/O Abort Message
CONTROL COMMAND DIAG NOSTICS

SIGMA 2/3 RBM OPERATIONAL LABEL
USAGE

CHARACTER-ORIENTED COMMUNICATIONS
(COC) EQUIPMENT HANDLER

Description of COC Package

M:COC

RCCC

135

135
135
135
135

135
135
136
136
137
137
138
138
138
139
139
139
139
139
139
139
140

166

141
141
141
141
141
142
142

142
142

147

151

151
151

154

155

157

157
157
157

VONOCU AWM~

OPNeO D~

e

COC Operation

Avutomatic Dialing

Restrictions

SYSGEN AND ASSEMBLY TIME OPTIONS

Hexadecimal Corrector Cards

Three-Character Processor Search

MEMORY REQUIREMENTS

Core Space Requirements for RBM
Core Space Requirements for the
RBM Processors

RAD Space Requirements

CALCULATING THE RBM SIZE
DEBUG EXPANSION OF INSTRUCTIONS

Expansion of Inserted Instructions
Expansion of Moved Instructions

DEBUG INSERTION STRUCTURE

DEBUG SNAPSHOT CALLING SEQUENCE

FIGURES

Operating System

Job Stack Example

Use of GO and QV Files

RAD Allocation

Foreground Priority Levels

Task Entrance Format

General Overlay Structure Example
Sample Overlay Cluster Configuration
Load Map Format

RBM Core Memory Allocation Example

Background Core Allocation Example
Core Layout After Absolute Load

Core Layout After SYSGEN and SYSLOAD ___
. Typical Object Module of M Records

Displacement Chain Format

TABLES
RAD/Disk Area

Standard Background Operational Labels
Standard Device Unit Numbers
RAD Area Mnemonics

RBM System Processors

Monitor Messages
Transfer Vector for Monitor Services
Return Status from M:IOEX

Return Status from M:READ, M:WRITE,
M:CTRL

1/O Completion Codes

157
158
158

159

159
159

160
160

160
160

162
163

163
163

164

165

1
17
19
59
64
69
73
74
75

119
120
121
121
141
146

10
12
12
17
21
28
30

33
34

11
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22,
23.
24,

Status Returns for M:COC 54

Completion Codes 54
Line Status 54
Line Mode 54
Summary of Editing Operations____ 55
Standard Device Unit Numbers . 57
Task Control Block (TCB) 66
Loader Error Messages 83
RAD Editor Error Messages 91
RAD Restoration Messages 93
1/O Error Messages 106
Control Function Command Error Messages 107
COPY Error Messages 109
Object Module Editor Error Messages 110

W W@ WNDNNNDDN
L LS®®SNa o

TITON
L/

bt

i
—
.

Record Editor Error Messages 110
Sequence Editor Error Messages 111
SYSGEN Input Options and Parameters 123
SYSGEN Error Messages 129
Routines and Idents for RBMPart2 130
SYSLOAD Alarms 134
Monitor Zero Table 147
Standard Constants 148
Monitor Constants 149
. RBM Abort Codes 153
. Overlay Loader Abort Codes 153
. Core Requirements for Additional Software 160
. RAD System Area Requirements 160
Device Type Table Allocations 162

GLOSSARY

active foreground program: a foreground program is active
if it is resident in memory, connected to interrupts, or
in the process of being entered into the system via a
IXEQ control command.

background area: that area of core storage allocated to
batch processing. This area may be checkpointed for
use by foreground programs.

background program: any program executed under Monitor
contro! in the background area when no interrupts are
active. These programs are entered through the batch
processing input stream.

batch processing: a computing technique in which similar
programs are grouped together and processed or exe-
cuted in a single run so as to effect efficient utiliza-
tion of the computer.

channel status table: a table of five words per SYSGEN-
defined 1/O channel that reflects the hardware condi-
tion of each I/O channel.

checkpointed job: a partially processed background job
that has been saved in secondary storage along with
all registers and other "environment” so that the job
can be restarted at its interrupted point.

clock counter: a memory location that records the progress
of real time or its approximation, by accumulating
counts produced by a (clock) count pulse interrupt.

close: terminating the use of an item (such as a file) and
performing certain clean up operations to provide for
its future reuse or the reuse of its resources.

control command: any control message other than a key-in.

A control command may be input via any device to
which the system command input function has been
assigned (normally a card reader).

control message: any message received by the Monitor that
is either a control command or a control key-in.

count zero interrupt: an interrupt level that is triggered
when an associated (clock) count pulse interrupt has
produced a zero result in a clock counter.

dedicated memory: core memory locations reserved by the
Monitor for special purposes, such as interrupts and
real-time programs.

device-file number: a logical method of referring both to
a physical peripheral device and to a collection of in-
formation about the device. The device file number
indicates the order in which devices are initially de-
fined at SYSGEN. For example, the first device
defined must always be a keyboard printer (DFN 1).

viii

device name: an identifier used at SYSGEN time for an
actual physical 1/O device that is composed of two
elements: a device type which is a two-character code
for a particular class of peripheral devices, and a de-
vice number which is a two-digit hexadecimal repre-
sentation of the physical unit number associated with
a device.

device unit number: an integer value coded into a
FORTRAN 1V program to reference peripheral devices.
Standard device unit numbers can be equated to device
file numbers (see above) either at SYSGEN time or
through Y'ASSIGN commands.

dictionary: a directory of names and addresses of files or
other catalogs on a random access device that endbles
the system to locate an item when given only its name.

disabled: the condition of an interrupt level wherein the
level may advance from the armed to the waiting state
when triggered by an interrupt pulse, but the level
cannotf cause a program interruption until it is enabled;
it thus remains in the waiting state until it is allowed
to interrupt the program.

disarmed state: the state of an interrupt level that cannot
accept an interrupt input signal.

disk pack: a secondary storage system of removable rotating
memory. For most RBM purposes, disk pack and RAD
are synonymous unless otherwise noted.

enabled: the condition of an interrupt level wherein
the level is not inhibited from advancing from the
waiting state to the active state except for priority
considerations.

end action: that action that takes place at the completion
of an 1/O operation. This usually includes the entry
of a special routine that was specified when the re-
quest was made.

end record: the last record to be loaded in an object
module or load module.

error severity level code: a code indicating the severity
of error noted by the processor. This code is con-
tained in the final byte of an object module.

execution location: a value replacing the origin of a
relocatable program that changes the address at which
program loading is to begin.

external interrupt: one of the class of interrupts that are
associated with special systems equipment. These
interrupts are "external" to the basic computer sys-
tem and are associated with functions that are de-
fined according to the requirements of a particular
installation.

external interrupt inhibit: the bit, in the program status
doubleword, that indicates whether (if 1) or not (if 0)
all external interrupts are inhibited.

external reference: a reference to a declared symbolic
name that is not defined within the module in which
the reference occurs. An external reference can be
satisfied only if the referenced name is defined by an
external load item in another module.

file control table: contains information about all device
files in the RBM system and is indexed by device-file
number.

file name: a name for a permanent file that is defined

either at SYSGEN or later through the RAD Editor.

foreground area: that portion of memory dedicated speci-
ficially for RBM, service routines, and foreground
programs.

foreground program: a program that executes in the
foreground area of core and can utilize all privileged
services.

foreground task: a body of procedural code that is associ-
ated with (connected to) a particular interrupt.

GO file: a RAD file of Relocatable Object Modules
(ROMs) formed by a processor. This is a default
input file when no file name is specified.

granule: the minimum physical amount of data transferred
in a read or write operation from/to random RAD or
disk pack files . A granule is usually synonymous with
a sector on a device, but may be defined (on a file
basis) to be equivalent to a partial sector, one sector,
or several sectors.

idle state: the state of the Monitor when it is first loaded
into core memory or after encountering a IFIN control
command. The idle state is ended by means of an
S key-in.

inhibited interrupt: o condition of an interrupt that pro-
hibits it from entering the active state.

input/output interrupt: an interrupt triggered by the stan-
dard I/O system of the computer.

installation control command: any control command used
during System Generation to direct the formatting of
a Monitor system.

internal interrupt: one of the class of inferrupts that are
supplied with a standard computer system, or are op-
tional additions associated with dedicated functions
(such as power fail-safe). These interrupts are
"internal” to the basic computer system.

interrupt trigger signal: a signal that is generated, either
internal or external to the CPU, to interrupt the nor-
mal sequence of events in the central processor.

I/O control table: a table containing the device-specified
input/output control doublewords and other information
necessary for RBM 1/O services. There is a one-to-one
correspondence between the 1/O control table and file
control table.

1/O control subtable: same as 1/O control table except
that the subtable is RAD specific.

library input: input from the device to which the LI
(library input) operational label is assigned.

library load module: a load module that may be combined
(by the Overlay Loader) with relocatable object mod-
ules, or other library load modules, to form a new
executable lood module.

link editing: the process of combining separately compiled
or assembled program modules, relocating them, link-
ing them to defined library routines, and producing
an absolute executable load module.

loading: the process of reading an executable program (see
link editing above) from secondary memory to absolute
locations in main memory.

load map: a listing of significant information pertaining to
the storage locations used by a program.

load module: an executable program formed by using
Relocatable Object Modules and/or library object
modules as source information.

logical device: a peripheral device that is represented in
a program by an operational label (e.g., BI or BO)
rather than by a specific physical device name.

memory protection: the use of the optional protection fea-
ture that keeps unprotected background memory from
altering protected foreground meaning.

memory write lock: a one-bit write-protect field optionally
provided for each 256-word page of core memory
addresses.

Monitor: a program that supervises the processing, loading,
and execution of other programs.

nonresident foreground program: a foreground program
explicitly called from secondary memory that resides in
the nonresident foreground area of core memory during
execution. The space thus occupied is considered
"active" and is protected by the Monitor from inter-
ference by other activities.

object deck: a card deck comprising one or more object
modules and control commands.

object language: the standard binary language in which
the output of a compiler or assembler is expressed.

object module: the series of records containing the
load information pertaining to a single program

or subprogram. Object modules serve as input to
the Overlay Loader.

open: the preparing of an item (such as a file) for initial
use.

operational label: a symbolic name used to identify a logi-
cal system device.

operational label table: there are two tables: one for
foreground and one for background. - The tables con-
tain the two-character operational labels that are used
for reference by the RBM service routines and connect
an operational label to a device file number.

option: an elective operand in a control command or pro-
cedure call.

Overlay Loader: a processor that links and absolutizes
elements of programs.

overlay program: a segmented program in which the seg-
ment currently being executed may overlay the core
stforage area occupied by a previously executed
segment.

OV file: a RAD file that contains an executable program
formed by the Overlay Loaderif a program file name
was not specified at load time. Used primarily to test
new programs or new versions of programs. This is a
default file when no output file is specified.

physical device: a peripheral device that is referred to by
a "name" specifying the device type, 1/O channel,
and device number (also see "logical device").

postmortem dump: an optional listing of the contents of a
specified area of core memory, usually following the
abortive execution of a background program.

primary reference: an external reference that must be
satisfied by a corresponding external definition (capa-
ble of causing loading from the System Library).

priority level: priority level of a task is dependent on the
position of its associated hardware interrupt in the
priority chain.

RAD/disk areas: the allocation and definition of a RAD
into specific areas during SYSGEN, each of which is
labeled with a two-character mnemonic to expedite
file management.

Rapid Access Data (RAD) storage system: a secondary stor-
age system of rofating memory. For most RBM pur-
poses, RAD and disk pack are synonymous unless
otherwise noted.

real-time processing: data processing designed so that the
results of the operations are made available in time to
influence some process being monitored or controlled
by the computer system.

reentrant: that property of a program or subroutine that
enables it to be interrupted at any point, employed by
another user, and then resumed from the point of
interruption. Reentrant programs are often found where
there is a requirement for a common store of public
routines that can be called by any user at any time.
The process is controlled by the Monitor which preserves
the routine's environment (registers, working storage,
control indicators, etc.) when it is interrupted and
restores that environment when the routine is resumed
for its initial user. A reentrant routine never stores
any intermediate values within itself.

Relocatable Object Module: a program or subprogram that
may be relocated and link edited to operate anywhere
in core; that is, does not have absolue addressing.

resident foreground program: a foreground program that is
automatically loaded into a fixed area of foreground
core memory every time the system is booted in.

secondary reference: an external reference that may or
may not be satisfied by a corresponding external
definition (not capable of causing loading from the
system library).

secondary storage: any rapid access storage medium other
than core memory (e.g., RAD or disk pack).

segment loader: a Monitor routine that loads overlay seg-
ments from RAD storage at execution time.

semiresident foreground program: a foreground program
explicitly called from secondary memory that re-
sides in the resident portion of core memory during
execution.

service routines: Monitor-supplied services and opera-
tions that can be called by an executing foreground
program, or else by an executing background program
(except for certain privileged function dedicated to
foreground use).

source deck: a card deck comprising a complete program
or subprogram in symbolic EBCDIC format.

source language: a language used to prepare a source
program (and therefrom a source deck) suitable for
processing by an assembler or compiler.

symbolic input: input from the device to which the
SI (symbolic input) operational label is assigned.

symbolic name: an identifier that is associated with some
particular source program statement or item so that

symbolic references may be made to it even though
its value may be subject to redefinition.

system library: a group of standard routines in relocatable
object language format, any of which may be included
in a program being created.

Task Control Block (TCB): part of the load module that
contains the area required for context storage. The
TCB is task-associated.

temporary files: those files that exist only until the current
job step ends. They may, or may not, have existed
prior to the start of the job.

Temp Stack: an area of memory optionally created by
the Overlay Loader for a user program and used by the
Monitor and System Library routines.

unsolicited key-in: information entered by the operator via
a keyboard in response to a Control Panel interrupt.

1. INTRODUCTION

RBM CHARACTERISTICS

The Sigma 2/3 Real-Time Batch Monitor (RBM) is the major
control element in the operating system. It supervises and
services simultaneous foreground programs and.background
batch programs without interfering with the real-time re-
sponse capability of the foreground.

RESIDENT SECTION

The resident portion of RBM consists of the following parts:

e Several independent tasks that are connected to the
hardware interrupts (e.g., the real-time tasks). The
tasks are not reentrant. They can communicate with
each other and may use some of the Monitor service
routines.

e Several reentrant Monitor service routines that can be
used by any task in the system. These are described
in Chapter 4.

e Standard system constants and tables (see Appendix B).

e Input/output constants and status information.

NONRESIDENT SECTION

The nonresident part of RBM consists of the system initiali-
zation portion that is loaded at the time the system is cre-

ated, Monitor service routines, and device-dependent 1/O
routines for which a response is not critical. It selects the
optional features of RBM and initializes the input/output

constants.

SYSTEM ENVIRONMENT

In addition to the Monitor itself, the hardware-software
environment of the operating system consists of the following
major elements:

e Sigma 2/3 hardware including (a) the required system
RAD, (b) the selected number of hardware interrupts
connected to various foreground tasks in user-determined
priority sequence, (c) dedicated and commonly shared
I/Odevices, and (d) optional secondary storage modules.

e Partitioned core memory (see Figure 1) divided into

o A protected foreground area reserved for (1) resi-
dent real-time foreground programs, (2) a single

Control Panel Interrupt

RBM Overlay

RBM Control Task B Subtasks

Job Control Processor

Monitor Service Routines

Resident Foreground

Resident

Background Processor

Nonresident Foreground

Nonresident

Figure 1.

Operating System

Introduction 1

nonresident foreground program, (3) Monitor tasks
that must respond to high-priority interrupts,
(4) Monitor service routines, and (5) optional
routines (such as a Public Library) that are used
by both foreground and background programs.

o An unprotected background area used by back-
ground (non-real-time) processors, translators, and
batch users' programs, and occasionally by fore-
ground programs requiring temporary use of addi-
tional memory. (In this case the foreground will
checkpoint the background.)

e The system RAD,f allocatable into permanent and tem-
porary files. The permanent files contain all of the
background RBM processors such as Basic FORTRAN 1V,
Extended Symbol, RAD Editor, etc., plus RBM itself.
They may also contain user data and optional resident
and nonresident foreground programs that can be called
into protected memory for processing. Temporary files
are normally used as intermediate scratch areas by
processors or user programs.

e Up to 137 (107 for Sigma 3) user foreground tasks that
can be connected to interrupts. Examples of foreground
tasks are process control operations, real-time data ac-
quisition and control, and low-speed telemetry applica-
tions. The RBM Control Task is connected to the lowest
priority hardware interrupt in the system so that no
background processing can delay foreground tasks.

e Overlay Loader for linking and absolutizing segmented
foreground and background programs that enables back-
ground processors and user programs to overlay them-
selves in core storage, and thus permitting programs of
virtually unlimited size to be executed.

FOREGROUND (High-Level Priority Response)

Within the framework of the user-determined hardware
interrupt priorities, foreground programs or tasks operate as
independent entities, and the Monitor generally makes no
attempt to inferject itself between these tasks and their real-
time functions. The Monitor services the foreground only
on request, such as a call to one of the Monitor service rou-
tines. The principal foreground services of the Monitor are to

e Respond to 1/O interrupts.

e Respond to an operator's console request (such as
queuing).

e Supervise RAD file activity.
e Optionally, supply a software version of multiply/

divide functions for configurations without multiply/
divide hardware.

"Eor RBM purposes, RAD and disk pack are synonymous
unless specifically stated otherwise.

2 RBM Characteristics

® load a foreground program into memory from the RAD
on request.

e Provide the foreground with standard constants (see
Appendix B).

® Mdke available a "mailbox" area of 32 cells of mem-
ory for communication between two or more foreground
programs.

The interrupt priority sequence (described in detail in the
Xerox Sigma 2 and Sigma 3 Computer Reference Manuals) is
the basis for the priority level of tasks in the RBM system.
That is, the priority level of a task is dependent on the
position of the associated hardware interrupt in the inter-
rupt priority chain. Background jobs in the system all have
the same priority level. A background job is not connected
to any inferrupt level in the system, i.e., ifs priority is be-
low all hardware interrupt levels and is processed serially.

BACKGROUND (Low-Level, No Priority)

The primary function of the Monitor is to supervise and con-
trol all those operations that take place in the unprotected
background area by the following means:

1. Use only available foreground idle time for back-
ground processing.

2. Interpret control functions from control command card
images via the Job Control Processor.

3. Supervise the loading and execution of all back-
ground jobs and activities in unprotected memory.

4. Provide simple background scheduling (first-in,
first-out).

5. Provide 1/O services for the background job stack.

6. Inform the operator on the status of peripheral device
operations.

7. Test all background operations and processes for fore-
ground protection violations and prevent the background
from altering or delaying foreground response or from
using dedicated 1/O devices.

Monitor processors and permanent user processors may be
loaded onto permanent RAD files and then executed by
control command. Programs may also be loaded onto tem-
porary RAD files for the duration of the present job.

All programs must exist on the RAD in absolute core image
form for execution. Relocatable programs, consisting of
a roof and one or more overlay segments linked by ex-
ternal references, must be created by the Overlay Loader
to link all modules and create the proper overlay struc-
ture for execution.

It is possible to create programs consisting of a root and one
or more overlay segments through use of the Absolute Loader
if there are no external references (see the ! ABS commandin
Chapter 2 for other restrictions).

Two levels of logical (rather than physical) device refer-
encing are provided, enabling system configurations fo
change or expand without reprogramming. Further, through
many device-independent features and use of standard media
formats, input and output can be directed to card equipment,
paper tape equipment, or magnetic tape without changes in
the user's program.

For maximum flexibility and control of input/output, the
user can optionally specify his own IOCDs and order bytes,
perform independent error recovery, and be informed by
RBM when an 1/O operation has terminated. Alternatively,
for greater ease of programming and device independence,
the RBM will create the IOCDs and order bytes and per-~
form standard error checking and recovery.

When multiprogramming with foreground tasks and back-
ground jobs, the foreground has access to all privileged in-
structions in the Sigma 2/3 computers. The background is
checked by both hardware and software to provide complete
protection of a foreground program's use of core memory and
peripheral operations.

SECONDARY STORAGE MANAGEMENT

The RBM operating system provides use of the RAD or disk
packs for

e Temporary and permanent files.
e User and system files.

e Sequential files (pseudo tape, where RBM performs all
bookkeeping).

e Random-access files (RBM performs 1/O transfer and con-
trols file limits, but user controls relative addressing).

RAD/DISK PACK AREAS

The concept of RAD areas is a convention created primarily
to offer a scheme to expedite file management. RAD areas
are allocated during system initialization (see RAD Alloca-
tion in Chapter 11) and are labeled with two alphanumeric
characters, usually from the following list:

SP UL
SD BT
SL CP
up Dn
ub Xn

where n is a hexadecimal digit, and Dn is an area that may
contain any data the user desires including program files.

Certain labels of the list above have the special meaning
given in Table 1.,

Table 1. RAD/Disk Areas

Mnemonic | Meaning

spf

System Processor area. Contains RBM and
user-selected processors from the list given
in Table 5 (the Overlay Loader is a man-
datory processor). This area is searched
whenever either a system processor or user

processor is requested.

spf System Data area. Contains files neces-
sary for the execution of RBM.

stt,uL System Library and User Library areas.
These are the only areas from which the
Overlay Loaderwill load library routines.

up User Processor area. Contains resident
foreground programs, foreground tasks,
nonresident programs, semiresident pro-
grams, and background programs. Only this
area and SP area are searched when a pro-
cessor is requested.

BT Background Temp area. Used for alloca-
tion of temporary files.

cpf Checkpoint area. Used to store the back-
ground environment when a background
program is checkpointed by a foreground
process.

Xn Xn areas are similar to Dn areas except
that the user has the option to perform his
own management of the entire area, thus
allowing access to data arranged in non-
standard formats. No disk pack verifica-
tion is performed for a Mount Area key-in
(see "Unsolicited Key-Ins" in Chapter 3).

tThese areas receive default allocations (see Table 27).
Note that the SP and SD areas must be present in the
system.

PROCESSOR FILES

Processor files are stored either as a single segment or as an
overlay structure. The Overlay Loader stores the files on
the RAD in core image form, ready for loading, and abso-
lutized for the space they will occupy at execution. The
processor files are loaded for execution via a processor con-
trol command. When allocating files, any file defined in
an area with a P as the second character of the mnemonic
is considered a processor file.

RBM Characteristics 3

LIBRARY FILES

Library files confain subprograms in a relocatable form.
The files have specified entry points and are in the form of
binary card images in Standard Object Language.

There is one library file for the system area mnemonic SL,
and one for the user area mnemonic UL. The Overlay
Loader can load selectively from one or both, in either
order of priority. Although records within a subprogram
are loaded sequentially, access to the individual subprogram
is on a random (direct access) basis.

DATA FILES

Permanent data files may contain any kind of data and may
be accessed sequentially or randomly, depending on how
they were created. The user is responsible for reading them
accordingly. RBM maintains no details on content, address-
ing, or record size. When allocating files, any file defined
in an area with a D as the second character of the area
mnemonic is considered a data file.

FILE NAME

Only permanent RAD files have a file name. Some names
are entered into the dictionary for the appropriate area at
System Generation; others are entered later by the RAD
Editor. After the name is in the dictionary, an IASSIGN
control command or a call to M:ASSIGN can equate either
an operational label or a FORTRAN device unit number to
this file name.

OVERLAY CAPABILITIES

Under RBM, the Overlay Loader can be used to create over-
lay programs for later execution in either the foreground or
background.t The overlay programs can be permanently
entered (as a file) into either the System or User Processor
areas, or into a temporary overlay file (OV). Since they are
stored on the RAD in absolute core image format, they can
be quickly loaded into memory for execution.

Each segment is created by the Overlay Loader from one or
more object modules {assembly language, FORTRAN, or
library routines). The control commands required to create
the overlay segments are defined in the discussion of the
Overlay loader. During execution, the Monitor service
routine M:SEGLD is used to control both the loading and
the transfer of control between various segments.

"For a complete description of the Overlay Loader, see the
Overlay Loader chapter.

4 RBM Characteristics

CHECKPOINT/RESTART

The checkpointing feature permits a partially processed
background job to be saved in secondary storage along with
all registers and other environment. The vacated back-
ground space is set to protected status and is then available
to the inferrupting foreground task for either instructions or
temporary data storage.

Checkpointing ensures continuity to the partially completed
background job by not repositioning any background periph-
eral devices, permitting all current background 1/O activity
to complete, and writing all of the background space onto a
prespecified RAD area.

Restart takes place when the previously checkpointed back-
ground program is reloaded from the RAD and continues
execution as though the interruption never took place.

PUBLIC LIBRARY

All RBM service routines and Sigma 2/3 system library rou-
tines (FORTRAN and mathematics libraries) are reentrant.
If an RBM system has several real-time foreground tasks that
use a number of the same subroutines, the collectively-used
set of subroutines can be loaded together into what is termed
a Public Library. Thereafter, whenever the Overlay Loader
processes a foreground or background program that references
one of the "public" routines, it sets the appropriate branch
to the Public Library. The Public Library is loaded into core
whenever RBM is rebooted from the RAD,

When one of the Public Library routines needs temporary
scratch space, it requests space (via a call to M:RES) from
the temporary stack of the task that is calling the Public
Library routine. When the library routine exits, the space
is released via a call to M:POP.

REENTRANT ROUTINES

As used in Sigma 2/3 software, "reentrant" means that a
subprogram (never a task) may be interrupted during execu-
tion, called again by the interrupting task, and later re-
entered and continued from the location of the former task.
This is a last=in, first-out kind of reentrancy in keeping
with the Sigma 2/3 priority interrupt system.

ACCOUNTING AND ELAPSED TIME

Background job accounting and provisions to limit the exe-
cution time of a background job can be accomplished via
Clock 1. (The use of Clock 1, an interrupt device, is
optional at SYSGEN initiation.) To correctly calculate
the elapsed time for the background, the Monitor M:SAVE
routine records the start fime of the first interrupting fore-
ground task and triggers the RBM Control Task to calculate
the actual foreground run time. By performing this calcu-
lation at the priority level of the RBM Control Task, rapid
response time for the foreground is maintained.

Clock 1 is also used to limit the execution time of a back-
ground program. The user may limit this execution time by
using the ILIMIT control command, and the RBM Control
Task will be triggered every 16 seconds to provide watchdog
services on the background program.

When a 1JOB control command is read, an entry is created
in the accounting file (RBMAL, SD). The entry includes the
start time, user name, and account number. The start time of

the job is then logged on the LL device as MM/DD/YR HRMN,

At the completion of each activity, the accumulated elapsed
time since the start of the job will be logged on the LL
device as ET=MMM.MM (minutes). At the completion of
the job (i.e., a new 1JOB or IFIN command) the current
date and time and a job recap are loggedon the LLdevice as

MM/DD/YR HRMN BK=MMM.MM,

FG=MMM.MM, ID=MMM.MM
where

BK represents the fotal job time. The total time
for a job is defined as the time available to the
background from the time the ! JOB control com-
mand is read until the next ! JOBor ! FIN command
is encountered.

FG represents the amount of time used by inter-
rupting foreground tasks during the job.

ID represents the accumulated idle time incurred

within the job. Thiscouldbe a resultof Wkey-ins
or the result of an attended job being aborted.

"The time for a background job is recorded in the accounting
file entry for that job. The IDLE account is updated to re-
flect total idle time charges. After the ! FIN control com-
mand is read, all idle time is charged to the IDLE account.

The following rules govern the operations of the Accounting
Log:

o A call to M:SAVE switches from the background to
foreground time accumulation.

e A call to M:EXIT switches from foreground accumula-
tion to background accumulation if a background job
is executing.

e A W key-in switches from foreground accumulation to
idle time accumulation. An abort from an attended
job switches the same way. An S key-in switches
back to foreground accumulation from the idle
accumulation.

e A 1JOB or !FIN command writes out total accumulated
times and resets times to zero.

e The ET (elapsed time) represents the total background
accumulation since !JOB was encountered. ET is
printed out each time CCI is read into the background.

SYSTEM INITIALIZATION AND CREATION

The RBM system creates itself for a particular installation
through a nonresident SYSGEN routine. The permanently
resident, nonoptional parts of RBM are loaded into low core;
next, the RBM initializer is loaded along with the optional
RBM routines and the standard input/output definitions
and tables.

The user then defines RAD areas, optional routines, the pe-
ripheral devices, and operational labels. This is followed
by a definition of the exact bounds on the foreground,
Monitor, and background memory areas, and the size of the
RAD areas. The system is then complete in lower memory.

Once the system is completely defined, routines not needed
will be discarded and an absolute rebootable version is
punched on a binary output device (optional) and a reboot-
able version is written onto the RAD. The system initializer
is overwritten by the first background program or real-time
foreground program loaded just below 12K,

If the system must be restarted later, the rebootable version
is loaded from the RAD. A completely new system initiali-
zation is necessary only if some of these standard definitions
must be changed.

When the system is created, a version number is specified
that will be printed on LL at the beginning of each job for

reference.

Protection switches on the 7202, 7204, and 7232 equipment
may be used to permanently protect certain areas of the RAD.

HARDWARE REQUIREMENTS

The minimum configuration required and supported by RBM
for either a Sigma 2 or Sigma 3 is the following:

e Sigma 2 or Sigma 3 CPU with either Internal IOP or
External IOP (Sigma 3 only)

e Memory Parity Interrupt

e Memory Protect Feature

o Hardware Interrupt (for RBM Control Task)

e Core Memory Module (8192 words)

®» One Memory Increment (8192 words)

e Keyboard/Printer with Paper Tape Reader/Punch

e RAD Controller

e RAD Storage Unit (0.75 M bytes)

An alternate minimum configuration (for a Sigma 3 CPU with
external IOP only) is a Disk Pack Controller and Disk Pack

Storage Unit to replace the RAD Controller and RAD storage
Unit. Other minimum requirements remain the same.

Hardware Requirements 5

In addition to the previous list, any items from the list
below can be added for increased performance and will be
specifically supported by RBM. Other items can be added
to this list but will not receive any special RBM support.

Disk Packs

Memory Module

Memory Increment

Keyboard/Printer

Paper Tape Reader/Punch (High-Speed)

Card Readers

Card Punches

RAD:s

?-Track Magnetic Tape

7-Track Magnetic Tape

BCD and Binary Packing Options for 7-Track Magnetic
Tape

Line Printers

Plotters

RBM SUBSYSTEMS

RBM will support the subsystems and processors described
below. All execute in the background area of core memory
and the collective set offers maximized utilization of
Sigma 2/3 computer capabilities.

LANGUAGE TRANSLATORS

EXTENDED SYMBOL

The Extended Symbol programming language (and assembler)
provides upward compatibility with basic Symbol in addi-

tion to extended capabilities that include using the RAD
for overlay to reduce core residence requirements,

The processor accepts as input a source program coded in
either Symbol or Extended Symbol, processes it, and out-
puts an object program load module, diagnostic messages,
an optional assembly listing, and an optional cross-reference
listing.

BASIC FORTRAN IV

Basic FORTRAN 1V is a one-pass compiler with capabil-
ities extended beyond Basic FORTRAN. It can compile
large source programs by using the RAD for overlay to mini-
mize core residence requirements, and has two floating-
point modes: standard precision and extended precision.

6 RBM Subsystems

SERVICE PROGRAMS

OVERLAY LOADER

The Overlay Loader forms absolute binary overlay segments
for later execution in either foreground or background areas.
If a resident or nonresident program can tolerate a loading
delay of 20 to 100 ms, foreground or background programs
of virtually unlimited size can be constructed with the
Overlay Loader despite limitations in available core storage.

RAD EDITOR

The RAD Editor performs RAD allocation for permanent files
and generates and maintains directories for the permanent
RAD areas: System Processor area, System Library areq,
System Data area, User Processor area, User Library areq,
User Data area, and any Dn areas and Xn areas. It allows
dumping of files and mapping of all RAD areas, including
checkpoint and temporary areas.

UTILITY SUBSYSTEM

The RBM Utility subsystem provides a universal media copy
routine, object module editor, dump routine, and record
editing by line or sequence number.

CONCORDANCE

The Concordance program provides the user with a listing
of program symbols and all references to these symbols by
source line number. Optional control cards permit inclusion
or exclusion of specified symbols in local, nonlocal, or
operation/directive code sections of the printout. Most of
the options of Concordance are available under Extended

Symbol.

Onmission of optional control cards yields a standard Con=
cordance listing containing all program symbols except
standard operation and directive code menmonics.

MISCELLANEOUS
DEBUG

The RBM Debug subsystem provides the user with a debug-
ging tool designed primarily for nonsegmented background
programs but with a limited capability for debugging fore-
ground programs. The Debug functions and commands are
described in Chapter 12,

COC

The character-oriented communications (COC) handler pro-
vides communication between Sigma 2/3 real-time programs
and various terminal devices. The COC consists of a con-
troller and from one to eight attached line interface units.
The Sigma 2/3 RBM can accommodate one COC. See Chap-
ter 4 and Appendix F for a more complete discussion of the
COC handler.

RBM TERMS AND PROCESSES

The following items are either unique to the RBM system or
have specific meaning within the RBM context. Terms and
processes not defined below are explained in the appropriate
chapter.

TASK

A"task" is an entire set of foreground operations performed
independently of other tasks in the system. It must be con-
nected to one and only one hardware interrupt. A task may
use Monitor service routines but must never branch to another
task. One task may trigger the interrupt level of another
task by means of a Write Direct instruction. The prescribed
entrance and exit procedure for all real-time tasks in the
system is described in Chapter 6.

A task logically consists of three parts (that may or may not
be contiguous in core storage):

1. A Task Control Block (TCB) that contains status infor-
mation and the contents of the registers from the inter-
rupted task (see Table 27). The TCB is normally the
first loadable item in the object module.

2. A task body, consisting of a sequence of instructions
executed in response to the task interrupt.

3. A task temporary storage area for use by the Monitor

service routines (and other reentrant library routines)
to provide reentrancy for these routines.

Examples of foreground tasks are

e Real-time foreground tasks connected to external
interrupfs.

e Monitor I/O interrupt routine.
e Monitor Control Panel interrupt routine.

e Monitor memory parity and protection violation
routines.

o RBM control routine (for loading, abort, etc.)

A background program can also operate as a single task but
without foreground privileges.

PROGRAM

A "program" is one or more tasks (and optionally, some
common datfa storage) that are loaded and controlled as a
unit. Four types of programs exist under RBM:

1. Resident foreground programs consisting of one or more
tasks, perhaps some special routines for receiving I/O
interrupt responses (see "End Action"), and any com-
mon storage that may be needed.

2. Semiresident foreground programs that are explicitly
called in from secondary memory and reside in the
resident portion of core memory during execution.

3. Nonresident foreground programs.

4. Background programs, consisting of a single task.

FOREGROUND

"Foreground" refers to real-time or Monitor tasks executed
in protected memory on a real-time basis. Since the num-
ber of foreground tasks is limited only by the number of
internal and external interrupts possible in the system, the
fundamental limitation is the amount of core space available.
However, the use of overlays and nonresident foreground
programs makes the amount of effective foreground space
virtually unlimited, depending only on the severity level
of required response times.

BACKGROUND

"Background" refers to a non-real-time program executed
in available nonprotected memory. The purpose of back-
ground programming is to achieve higher efficiency in the
system by using up the available CPU time not needed by
real-time tasks to maintain foreground programs, or to per-
form other data processing functions.

Background operations may be assemblies, compilations,
data processing, or utility operations. The two fundamental
restrictions in using background programming are

1. Sigma 2/3 hardware and the RBM software completely
and absolutely protect resident foreground programs
from a background program in terms of I/O and core
memory usage. Thus, a background program is never
allowed to interfere with real-time foreground tasks:
it must operate in nonprotected memory and use the
Monitor service routines for all 1/O or other privileged
operations.

2. Since a background program uses only the CPU time
available after the real-time foreground is satisfied, it
may not be guaranteed any CPU time when foreground
is very active. The background is not allowed to in-
hibit interrupts or do anything else that might interfere
with real-time foreground responsiveness.

Jos

A"job" is defined as consisting of all background activities
or processes that take place between a 1 JOB command and
the next ! JOB command or a ! FIN command (whichever is
encountered first).

RBM Terms and Processes 7

JOB STEP

A'job step" is defined as the operations performed in setting
up and processing a single program within a job stack. A
job step is initiated by calling in a background processor
and ends when the processor exits.

BACKGROUND TASK

A "background task" is an executable version of a single
background process that shares the same restrictions as
other background jobs relative to foreground priorities
and privileges.

MONITOR SERVICE ROUTINES

RBM service routines can be used by real-time foreground
tasks, a background task, or RBM tasks. All routines are
coded in a reentrant manner, and those that require tempo-
rary storage use the temporary stack space associated with
the task that calls the routine (see Chapter 4).

TEMPORARY STACK

The temporary stack (temp stack) is a block of core storage
associated with a particular task and is used by Monitor ser-
vice routines for temporary storage to achieve reentrancy.
An entry in the TCB for a task points to the temp stack
space. When a task is active and using either Monitor ser-
vice routines or the floating accumulator (defined below),
the beginning of the temp stack space for the active task
must be sef into core memory location 6 (after the previous
contents of location 6 are saved). Monitor service routine
M:SAVE will set this pointer.

When Monitor service routines or Public Library routines
need temporary space, they can call M:RES to reserve space,
and M:POP must then be called to release the space when it
is no longer needed. Thus, the total temp stack is a func-
tion of the deepest nesting of calls to Public Library routines
and RBM service routines and of the space required for
these routines.

FLOATING ACCUMULATOR

This software convention is used extensively by mathematics
library routines and can also be used by any user's program.
The floating=point accumulator is assumed to occupy the
first six locations of the temporary stack space. It is used
like a hardware accumulator, i.e., to build up a cumula-
tive result from single-precision or double-precision real
(floating-point) calculations.

8 RBM Terms and Processes

As a convenience in referencing the floating accumulator,
core locations through 5 are set with pointers to the actual
core locations. This is done when entry is made to the ac-
tive task (by M:SAVE when the routine is used). Therefore,
indirect addressing through locations 1 through 5 will result
in storing, loading, or modifying the actual floating accu-
mulator. The sixth cell of the floating accumulator is used
by the FORTRAN-formatted 1/O routine.

RBM CONTROL TASK

The RBM Control Task encompasses a number of subtasks
that control the reading of control commands, loading back-
ground programs, interpreting unsolicited key-ins, and
aborting or terminating a background job. During system
initialization, the RBM Control Task must be assigned to the
lowest priority hardware interrupt.

The RBM Control Task uses the same entrance and exit pro-
cedure and the same type of TCB as a real-time foreground
task. Since its main function is to control background
activity, it has a lower priority than any real-time task.
It is necessary that this be a separate task (and not part of
the background priority level) so that effective and respon-
sive control can be made through key-ins. All RBM func-
tions associated with this level operate as subtasks to the
RBM Control Task and are non-reentrant.

NONRESIDENT FOREGROUND

Nonresident foreground programs are real-time programs
not needed in core on a continuousbasis. They are created
like resident foreground programs and are then written on
the RAD in the user processor (UP) area. An operator or a
resident real-time program can later call one of these non-
resident programs, and it will be loaded and executed like
a permanently resident real-time foreground program with
all the protection and priority privilege characteristics of
the foreground.

COMPRESSED RAD FILES

EBCDIC character codes do not use all possible bit combi-
nations of an eight-bit byte, and some combinations (X'FC*
and X'EC') are therefore available for special coding bytes.
Since EBCDIC information often contains a large number
of "blank" byte strings, a code and a word count are used
to replace an entire string of blanks. Thus, several 80-byte
source cards {usually about 12) can be compressed and
blocked into a 360-byte RAD sector. The RBM Read and
Write routines provide the compression or decompression
feature, and the user program can read or write as though
the file contained 80-byte card images.

2. CONTROL COMMANDS

The Monitor is controlled anddirected by control commands
that initiate loading and execution of programs and provide
communication between a program and its environment.
The environment includes the Monitor, background proces-
sors, the operator, and peripheral equipment.

Control commands have the general form:

Imnemonic specification

where
| is the first character of the record and identifies
the beginning of a control message.
mnemonic is the mnemonic code name of a control

function or the name of a processor. It must
immediately follow the ! character without inter-
vening spaces.

specification is a listing of required or optional
specifications. This may include labels and nu-
meric values appropriate to the specific command.
In the specification field, hexadecimal values
must be shown as +xxxx and EBCDIC values must
begin with a letter; any other values are assumed
to be decimal values. Specification fields are
separated by a comma or an equals sign.

In this manual the options that may be included in the
specification field of a given type of control command are
shown enclosed in brackets although brackets are not used
in actual control command format.

One or more blanks separate the mnemonic and specifica-
tion fields, but no blanks may be embedded within a field.
A control command is terminated by the first blank after
the specification field. Annotational comments detailing
the specific purpose of a command record may be written
following the specification terminator, but not beyond col-
umn 72. Only columns 1-4 are examined to determine the
control command.

The user may insert comment lines within a job stack at any
point where a Monitor control command would be recog-
nized. A comment line contains an asterisk as the first
character of the line. The comment line is listed on the

LL device.

Communication between the operator and the Monitor

is accomplished via control commands, key-ins, and
messages. Control commands are usually input to the
Monitor via punched cards; however, any input device(s)
may be designated for this function (see !ASSIGN com-
mand). Control key-ins are always input through the
keyboard/printer. All control commands and Monitor
messages are listed on the output device designated as

the listing log (normally a line printer) to provide a
hard-copy history of a job.

JOB CONTROL PROCESSOR (ICP)

Monitor control commands are read from the background
operational label CC unless the operator has requested a
keyboard/printer override through an unsolicited KP key-in.
All such commands are read by the Job Control Processor
(JCP), a special processor loaded into the background by the
RBM and reloaded into the background following each
job step within a job. When a control command is en-
countered by the JCP, the order of search is

1. Monitor service commands.
2. System processor names.

3. User processor names.

A 1JOB command sets all background operational labels to
their standard assignments. All temporary RAD space is set
"unused" and is then available for following job steps. l

As the JCP encounters }ASSIGN and !DEFINE commands
between job steps, it makes appropriate entries in the oper- |
ational label tables and continues to do so until it encoun-
ters a request for a processor. When the requested processor
is read into the background and attains control, this marks
the beginning of a job step. |

At the end of each job step (i.e., when the JCP begins
reading control commands at the completion of the previous
job step), all background operational labels associated
with temporary RAD space are set to an undefined status
and all temporary background space is reset to an "unused"
status unless a ITEMP S control command is in effect, which
saves temporary files until a ITEMP R, 1JOB, or IFIN com-
mand is encountered.

MONITOR CONTROL COMMANDS

ABS The 1ABS control command causes the Absolute
Loader to read absolute binary programs from the Al device
and write core image copies onto the OV file. The last
(or only) segment to be read must be followed by an IEOD
command. The binary program(s) following the !ABS com-
mand must contain only those load items that are part of the
Sigma 2/3 Absolute Object Language. The program can be
a background program, a processor for the background, or
a real-time foreground program.

A subsequent | XEQ command causes the RBM subtask S:LOAD
to load the core image of the root segment (segment number 0)
from QV into core storage. Subsequent segments (1 - n)
are loaded by the root through the use of M:SEGLD.

Control Commands 9

When an 1ABS control command is encountered, the
Absolute Loader reads the absolute deck that follows from
the Al device and writes the core image copy onto the file
to which the OV operational label is currently assigned.

If OV has not been assigned, it will be assigned by default
to the RBMOV file on the RAD. The program can be exe-
cuted from a permanent SP (system processor) or UP (user
processor) file either by inputting a "Iname" command
(where "name" is the name of the file on which the program
was written), or an ! XEQ command.

If a multisegment program is loaded, the Absolute Loader
creates an OV:LOAD table at the end of the root. The root
must always be the first load module and each succeeding
load module is assigned a consecutive segment identifica-
tion number, with the first succeeding segment starting

at "1". In the OV:LOAD table, each segment's load ad-
dress will be at its origin location and its entry address will
be the transfer address generated by the 1END card image.

The form of the ! ABS control command is

1ABS [size][,oplb.'][,oplbz][,oplbs]... [,OPIbIO]

where

size is an optional parameter for background pro-
grams only. It specifies the temp stack size
required for the background program being
loaded. If size is omitted, a temp stack size
equal to the maximum size needed for all Monitor
service routines (80) will be used. The temp stack
will always be allocated at the start of back-
ground, and it is the user's responsibility to origin
his program above the temp stack. For foreground
programs, the size parameter is ignored and the
temp stack pointers must be assembled as part of
the program (i.e., in the TCB).

oplby,oplby... are operational labels used by the
program that require blocking buffers (i.e., those
labels that may be assigned to blocked RAD files).
A maximum of 10 operational labels may be speci-
fied. When the program is loaded from the RAD
for execution, the Monitor will ensure that enough
block buffers are available for these specified
labels assigned to blocked files.

Programs loaded under the Absolute Loader are subject to
the following restrictions:

e No external references are permitted.

e The program must be in absolute form.

e Relocatable code may not be imbedded.

ASSIGN The TASSIGN control command causes either a
new or standard operational label to be equated with a
specified (or temporary) file number. Since operational

10 Monitor Control Commands

labels for the background are reset to the standard values
at the beginning of a job by the Job Control Processor, an
operational label assignment is in effect only until the next
1 JOB command is encountered or until it isagain reassigned.

An operational label is a two-character name that is used
as a label in referring to a device-file number. The con-
vention of operational labels is used for the processors or
any other program to make them device-independent, and
also to give some mnemonic value to the input/output opera-
tions associated with the processors.

Device file numbers are a logical means of referring both

to a physical peripheral device and to a collection of in-

formation about that device; that is, the current file of

information. Device file numbers are defined sequentially
(and remained fixed) in the DEVICE FILE INFO parameter
during SYSGEN (see Table 27).

Standard operational labels can be reassigned to different
device-file numbers during SYSGEN or through 1ASSIGN
and !DEFINE control commands. One table of operational
labels is used for the background (see Table 2 below) and
another table is used for the foreground. Device unit
numbers are also stored in the same two tables as binary
integer values.

Table 2. Standard Background Operational Labels

Operational | Explanation

Label of Reference 1/O Device

Al ABS binary input CR, PT, MT,RD

BI Binary input CR, PT, MT,RD

BO Binary output CP, PT, MT,RD

CcC Control command KP,CR, PT, MT,
input RD

DO Diagnostic output Same as LO

GOt Executioninput (GO) | CR,MT,PT,RD

ID Debug ident file RD

LI Library input Same as BI

LL Listing log Same as LO

LO Listing output LP,KP, MT,RD

ocC Operator's console KP

ov' Overlay (temporary) RD

PIH Processor input RD

PM Punch RBM CP,PT, MT

Table 2. Standard Background Operational
Labels (cont.)

Operational | Explanation
Label of Reference 1/O Device
SI Symbolic input KP,CR, PT, MT,
RAD

s2' Sigma 2/3 procedures | RD
Ul Update input CR,PT,MT,RD
uo Update output PT, MT,RD
x1' Extended Symbol MT, CR,RD

tHt
X2 Overlay Loader, RD

Extended Symbol

Tt |
X3 Extended Symbol RD
x4t Utility (verify) RD

tt ore
X5 Utility (prestore) RD

t . . .

These operational labels, if required by a processor,
are automatically assigned to permanent files in the
system data area by the Job Control Processor.

M he PI operational label is assigned to files in the
System Processor and User Processor areas by the Job
Control Processor.

M hese operational labels are automatically assigned
to background temporary RAD files, with the file defi-
nition appropriate to the background processor being
executed. These definitions are made from a table in
the Job Control Processor that is selected by the first
three characters of the processor name.

The standard foreground operational labels are as
follows:

Operational Explanation of

Label Reference I/O Device
BO Binary output CP,PT,MT
AL Accounting log RD

An assignment to file zero means that the operational label
is not effective, and all references to this operational label
result in a no-operation until it is reassigned. Note: some
background processors (e.g., Utility) do not allow use of
active operational labels assigned to file zero. See
Appendix E for a complete description of operational label
usage.

TASSIGN commands can appear anywhere within the con-
trol command stack (except within a job step) and take
effect immediately. That is, if the CC operational label is
reassigned, the very next control command is read from the
newly assigned device (unless the KP override has been
imposed by an unsolicited key-in). The IASSIGN com-
mand is used for both foreground or background operational
labels. (The operator must key in FG before assigning a
foreground operational label.)

There are three forms of the 1ASSIGN command. Form 1 is

IASSIGN oplb = file number[, F}

where

oplb is either a two-character alphanumeric name
in the foreground or background operational label
table (or is to be placed in the table), or a
FORTRAN device unit number, indicated by the
prefix F: preceding the device unit number (see

Table 3).

file number s the device-file number for a physical
device in the system (created at SYSGEN).

F when present, declares that the assignment is fo
be included in the foreground operational label
table. Otherwise, it is assumed to be in the back-
ground operational label table, and the file num-
ber must also be a background file number.

Form 2 of the !ASSIGN command is

IASSIGN oplb =file name , area mnemonic [, F]

where

oplb is an operational label or a device unit num-
ber identified by the F: prefix.

file name is the name of an existing RAD file. The
RAD file is rewound if it is blocked or compressed.
Only permanent RAD files can have a file name.
Once the file name is entered in the dictionary
by SYSGEN or RAD Editor, an !ASSIGN control
command or call to M:ASSIGN can equate either
an operational label or FORTRAN device unit
number to this file name.

area mnemonic specifies the area to search for the
file name, usually from the areas listed in Table 4.

F indicates that the assignment is to be included
in the foreground operational label table.

Monitor Control Commands 11

Table 3. Standard Device Unit Numbers

Examples:

Device Unit

Number Standard Assignment
101 Keyboard/printer input
102 Keyboard/printer output
103 Paper tape reader

104 Paper tape punch

105 Card reader

106 Card punch

108 Line printer

Table 4. RAD Area Mnemonics

Code Meaning

SP System Processor area

SD System Data area

SL,UL System and User Libraries

up User Processor area (user tasks and

programs and background processors)

BT Background Temp area

cp Checkpoint area

Dn Data areaf(s)

ub User Data area

Xn Similar to Dn areas but no disk pack

verification performed

Form 3 of the !ASSIGN command is

IASSIGN oplb = oplb [, F]

where
oplb is as defined above.
F if present, indicates that both operational labels

are foreground; otherwise, both operational labels
must be background labels.

12 Monitor Control Commands

Form 1: !ASSIGN SI =3
IASSIGN F:105 = 3

Form 2: IASSIGN OV =FILEl, UP

Form 3: IASSIGN LI = Bl

ATTEND The !ATTEND control command indicates that
RBM is to go into a wait condition on any abort from the
background, and then read and process the next control com=~
mand encountered when background processing continues
after an unsolicited key-in. Its primary purpose is to offer
improved recovery point procedures. If an abort occurs
without this control command being specified, JCP will re-
set the CC operational label to the standard value, skip all
control commands, binary records, or data until it finds a
new !JOB or IFIN command, and will not pause for opera-
tor intervention. In this "skip" mode, all EBCDIC records
beginning with ! will be listed on the LL device, with an
indication (*>' preceding the command) that they are ig-
nored. This is the normal mode for closed-shop batch pro-
cessing, without halts between jobs after aborts.

The form of the command is

TATTEND

It exists for one job only, and usually immediately follows
the 1JOB command.

c: The IC: control command connects the designated
real-time foreground task to a specified interrupt location,
optionally armed and enabled as specified by the control
code. The task may also be triggered by means of this con-
nect operation if the code is equal to seven, providing that
the task has previously been armed (i.e., with a previous
IC: command, an !XEQ or "lname" command, or by a

Q key-in).

The form of the 1C: control command is

IC: TCB [, code]

where

TCB is the address of the Task Control Block for
this task. If the value is hexadecimal, it must be
shown as +xxxx. If the Overlay Loader initializes
the TCB by means of the TCB parameters, it does
so completely, using load information and values
on the TCB and BLOCK cards. No partial initiali-
zation of a TCB is allowed with the exception of

the blocking buffer pool. If a user builds his own
TCB, the TCB must begin at the execution location
plus the "temp" value specified on the Overlay
Loader 1SROOT command.

code when present, is the interrupt operation code.
It overrides the initial TCB task code; a code of
7 triggers the task if it is armed.

Note: If "code" is not specified, the code given
in the TCB will be used.

The !C: command does not change the contents of the TCB.

cc The !CC control command returns control to the cur-
rently assigned CC device and nullifies the effect of a
previous KP key-in. The control command is honored
regardiess of whether or not the "skip" mode is in effect.
The "skip" mode is cleared following this command. The
form of the command is

ICC

DEFINE The IDEFINE control command allocates a
portion of the background temporary RAD space for a spe-
cific operational label or device unit number by assigning
the operational label to an unused device-file number,
which in turn is linked to the specified portion of the RAD.
Since temporary RAD files are not maintained by the Moni-
tor, they have no name and are identifiable only by the
operational label for which each file was created. The
IDEFINE control command must precede the specific pro-
cessor or user program to which it applies, since this tem-
porary space is reset at the beginning of each job and at
the subsequent reloading of the JCP (unless a ITEMP S
control command is in effect). That is, the files are de-
stroyed and the RAD space and all device-file numbers
linked to it may be used by the next job.

The form of the !DEFINE control command is

R
IDEFINE oplb, nrec, srec [{, U‘:|
C

where

oplb is an operational label or a FORTRAN device
unit number (with a prefix of F:).

nrec is the number of logical records in the file.
srec is the logical record size, in bytes.
R defines the file as a random-access file.

8] defines the file as an unblocked file.

C defines the file as a compressed EBCDIC file.

If neither R, U, nor C is specified, the file is defined as a
subsequential, noncompressed, blocked file. If R is input,
srec is used as the granule size.

EOD Blocks may be defined in a user's deck by inserting
1EQOD control commands at the end of each block. When an
IEOD command is encountered, the Monitor returns an EOD
status (when using the M:READ 1/O routine). This is similar
to a tape-mark on magnetic tape. Any numberof 1EOD con-
trol commands may be used in a job wherever desired by

the user.

The form of the 1EOD control command is

1EOD

FIN The !FIN control command specifies the end of a
stack of jobs. When the IFIN control command is encoun-
tered, the Monitor writes it on the listing log to inform the
operator that all current jobs have been completed and also
writes | IBEGIN IDLE on the OC device. The Monitor then
enters the idle state.

The form of the IFIN control command is

IFIN

FSKIP,FBACK,RSKIP,RBACK The file positioning con-
trol commands, !FSKIP and !FBACK, forward or backspace
the specified device (magnetic tape or sequential RAD file)
immediately past the next file mark, or past the nth file
mark if n files are specified (n = 1 for RAD files). IRSKIP
and IRBACK perform similar functions but act on records
rather than files. !RBACK does not apply to compressed
RAD files.

The forms of the control command are

IFSKIP
IFBACK .
IRSKIP device [, number]
IRBACK
where
device is the device indicator of the device to be

positioned and is restricted to background devices.
The device indicator is one of the following:

1. A device-file number, shown as a decimal
integer.

Monitor Control Commands 13

2. A FORTRAN device unit number, shown as
F:n

where n is a decimal integer equal to the de-
vice unit number.

3. An operational label, shown as two alpha-
numeric bytes, the first of which isalphabetic.

number s the number of operations tobe performed;

if absent, one operation is assumed.

HEX The 'HEX control command loads patches at execu-
tion time for either the Monitor itself or any user program.
(See Appendix G for input description.)

The form of the 'HEX control command is

IHEX

JOB The ' JOB control command signals the beginning
of a new job. The background operational labels and
FORTRAN device unit numbers are set to their standard
assignments as defined at System Generation. All RAD

temp files are closed.

This command always causes a page to be ejected on the
LL device before the command is listed. The version of
the RBM being utilized will be inserted following the last
field on the ' JOB command.

The form of the ! JOB control command is

1JOB [nome,accounf]

where
name has a limit of 12 characters.

account has a limit of six characters.

JOBC The ' JOBC control command indicates a con-
tinuation of the current job. !JOBC closes all RAD temp
files and resets all background operational labels to their
standard assignments {(with the exception of "CC"). The
1JOBC command does not clear the "attend" flag or the

"skip" mode, nor does it terminate the effect of an FG or
SY key-in. (A useful application of the ! JOBC command
is given in the Utility job deck example in Chapter 10.)

14 Monitor Control Commands

The form of the 1 JOBC control command is

1JOBC

LIMIT The !LIMIT control command is used to set a
maximum on the execution time of a background program.

This command is effective only if the system has real-time
Clock 1 dedicated to the Monitor. If the job exceeds the
time limit, the job is aborted (TL) and is terminated with a
postmortem dump (if that option was specified).

The form of the !LIMIT control command is

ILIMIT [N]

where N is the maximum allowable execution time in min-

utes (0 < N < 6000).

MESSAGE The IMESSAGE control command is used to
type a message to the operator. It is useful for messages
concerning mounting tapes or setting certain device or

Control Panel conditions. The command is listed on the

OC device. There is no response.

The form of the |MESSAGE control command is

IMESSAGE message

where message is any comment to the operator, up to the
full-card image size (total of 72 columns per card).

PAUSE The 1PAUSE control command temporarily sus-
pends background operation to allow the operator time to
complete the job setup. Background operations resume when
the operator performs an unsolicited S key-in. The command
is listed on the OC device.

The form of the !PAUSE control command is

IPAUSE message

where message is a comment to the operator, up to the full-
card image (total of 72 columns per card).

PMD The !PMD (postmortem dump) command causes the
Monitor to dump the registers plus selected areas of mem-
ory if an error occurs during program execution. The dumps
are always onto the background DO device in hexadecimal
format.

The form of the |PMD command is

1PMD [U][, ALL] [, from, to] . . . [from, to)

where
U if present, signifies an unconditional dump at
the end of the next job step even if there are
no errors.

ALL if present, signifies that all of the background
memory is to be dumped. If ALL is not present
and no limits are specified, only the general
registers are dumped.

from specifies the location (decimal or hexa-
decimal) at which dumping is to begin.

to specifies the last location to be dumped.

Up to four limit-pairs may be specified. The CPU registers
are printed in hexadecimal as the first line of the dump
regardless of the limits.

PURGE The IPURGE control command is used to output
the contents of the accounting file. The output is to back-
ground operational label LO in the following format:

MM/DD/YY HRMN NAME ACCOUNT TIME

(MMMM. MM)

An option is provided to clear the accounting file sub-
sequent to this output. In this manner the user could assign
background operational label LO to a device such as the
card punch or the paper tape punch, and by exercising the
"clear" option, could produce a periodic hard copy of
the accounting file and clear the accounting file for
future use.

The form of the IPURGE control command is

IPURGE [C]

where C is the directive to clear the accounting file (must
be preceded by an unsolicited SY key-in).

REL Relocatable binary program modules to be loaded
onto the GO file are preceded by an IREL control com-
mand. The binary modules that follow must be in Sigma 2/3

Standard Object Language. The modules may constitute
a complete program, a root, or segments of a program.

The form of the !REL control command is

IREL

The modules are copied onto the file to which GO is cur-
rently assigned. If GO has not been assigned, it will be
assigned by default to the RBMGO file on the RAD, which
is rewound before the modules are copied. Several modules
may be copied through the use of one IREL control command
by stacking the modules. The final module must be fol-
lowed by an IEOD control command that will cause the
JCP to write an end-of-file (EOF) onto GO and then
backspace one file. In this manner the GO file is
positioned to accept additional input, but is always
terminated by an EOF. The relocatable binary decks are
loaded from operational label BI.

The IREL control command is a convenient method of
obtaining additional hard copies of object modules pro-
duced on GO by Extended Symbol or FORTRAN. By as-
signing BI to GO and then reassigning GO to BO, modules
will be copied from the original GO onto BO up to and
including the EOF. BI should be rewound before each
IREL command.

REWIND The IREWIND control command rewinds a mag~
netic tape or a sequential RAD file and has no effect on
other devices. The operation takes place immediately
after the command is interpreted. The command is re-
stricted to background files.

The form of the IREWIND control command is

IREWIND device

where device is the device indicator (as in | FSKIP) of the
device to be rewound.

TEMP Normally, the temporary background space on
the RAD is reset at the completion of each step within a

job, so that a separate assembly and compilation can each
have full accéss to this temporary area for scratch space
as needed. The !ITEMP control command is a means of
altering this standard procedure. When used with the
save (S) option, temporary files are not released after any
job step within a job stack until either a ITEMP command

Monitor Control Commands 15

is encountered with a reset (R) option or the next 1JOB,
1JOBC, or !FIN command is encountered.

The form of the ITEMP control command is

rewe [0

where either S or R is required

S means to save RAD temporary files between job
steps within a job (e.g., between an assembly
and a concordance).

R means to reset the RAD temp files after each job'
step.

UNLOAD The IUNLOAD control command causes a
specified magnetic tape or sequential RAD file to be re-
wound in manual mode. Operator intervention is required
to use the device again. If the device is a sequential RAD
file, the file is rewound to BOT and released by a call to
M:CLOSE. The command is restricted to background files.

The form of the lUNLOAD control command is

ITUNLOAD device

where device is the device indicator (as in !FSKIP) of
the file to be rewound off-line.

WEOF The YWEOF command writes the appropriate end-
of-file mark on the output device. The command is
restricted to background files. For magnetic tape, it
is a tape mark; for the card punch or paper tape punch,
it is an 'EOD command; and for sequential RAD files,
it is a logical file mark.

The form of the IWEQOF control command is

IWEOF device [, number]

where
device is the device indicator (as in !FSKIP)

of the device that is to have an end-of-file writ-
ten on it.

number is the number of end-of-files to be written.
If absent, one end-of-file is written.

16 Processor Control Commands

XEQ The IXEQ control command loads the first program
from whatever file the OV operational label is currently
assigned to. For foreground programs, the command must

be preceded by an FG key-in.

The form of the ! XEQ command is

IXEQ

XED The IXED control command performs the same oper-
ations as the | XEQ control command except that | XED
transfers control to RBM Debug through the entry point
D:KEY when the root segment has been loaded. The mes-
sage IDKEY-IN will appear on the keyboard/printer and
the user can then input Debug control commands. (See
Chapter 12 for a discussion of RBM Debug.) The I XED
control command causes the background operational label

ID to be default-assigned to the RBMID file on the RAD if

it is not already assigned.

The form of the !XED control command is

IXED

PROCESSOR CONTROL COMMANDS

System processors on the System Processor area and any user
background or foreground program residing in the User
Processor area can be called by a processor control com-
mand. The commands have the format

Iprocessor parameters

where
processor is the file name of a processor (see
Table 5).
parameters are optional parameters interrupted by

each particular processor.

When a processor control command is read and interpreted
by the Job Control Processor, the root segment of the speci-
fied subsystem is loaded from the RAD into memory. The
JCP will assign all permanent RAD files used by the speci-
fied processor before the processor is executed unless these
files were previously assigned via IASSIGN commands. The
JCP will also define all temporary operational labels used
by the processor (by defining them as background temp
files) unless they are previously defined via !DEFINE com-
mands. JCP then transfers control to the processor.

Table 5. RBM System Processors

Namef Description

IFORTRAN Basic FORTRAN 1V Compiler

ICONCORDA Concordance Program for
Extended Assembler

1OLOAD Overlay Loader

IUTILITY Utility

IXSYMBOL Extended Symbol Assembler

IRADEDIT RAD Editor

MThe RBM System Processor names are entered into
the System Processor area dictionary with the RAD
Editor *ADD command. If the file name is less
than eight characters, the name on the processor
control command must exactly match the file name.
If the file name is eight characters (maximum), the
first eight characters of the name on the processor
control command must exactly match the file name.
Trailing nonblank characters beyond the eighth
character in the processor contro! command name
are ignored.

When a requested processor is read into the background
and attains control, this marks the beinning of job step.

An example of a job stack illustrating its breakdown by job
step is shown in Figure 2.

EXTENDED SYMBOL CONTROL COMMAND FORMAT

The Job Control Processor reads and interprets the
IXSYMBOL control command and loads the Extended Sym-
bol assembler from the RAD into background memory. The
assembler continues to assemble programs until it encounters
an end-of-file. The Extended Symbol assembler is called
into operation with the command

IXSYMBOL [opfion] ,opﬁonz, - ,opfionn]

where option can be

BA specifies batch assembly mode.

BO

specifies binary output.

CR specifies cross-reference listing.

X

| IEOD

| I*REWIND Ul
Job Step

Monitor enters

| 1*COPY F,ALL, FORM

"Idle" state.

| 1*OPLBS LO

] LUTILITY COPY

JCP is read into

| IASSIGN LO=2

background

| 1ASSIGN UI=10

IREWIND LO

Utility is read

S

into background.

Job Step

| Source Deck

JCP is read into

] IXSYMBOL LO,CR

background.

—I IREWIND 10

J 1ASSIGN LO=10

| IATTEND

Extended Symbol

1JOB

is read into
background.

Figure 2. Job Stack Example

Proccessor Control Commands 17

Dw specifies display warnings.
GO specifies output GO file.

LO specifies list assembly output.

NP specifies no standard procedure input.
NS specifies no summaries.

PP specifies punch standard procedure file.
SL specifies simple literals.

Any number of options may be specified and in any order.
If no options are specified, the following options are
assumed by default:

BO, GO, LO

The presence of any nondefault option requires that any
desired default options (except SI which is always defaulted)
must also be present.

BASIC FORTRAN IV CONTROL COMMAND FORMAT

The Job Control Processor reads and interprets the IFORTRAN
control command and loads the Basic FORTRAN IV compiler
from the RAD into background memory. The compiler is
called into operation with the command

IFORTRAN [s,,S,,...,S]

where Si can be

LO specifies an object listing.
Lt specifies an object listing with data chains.
Xp specifies extended precision real data instead

of standard precision.

ALL specifies that multiple files are compiled.
FORTRAN will ignore single end-of-files and
will terminate compilation only when two con-
secutive end-of-files are read.

Binary output is normally output on both the BO and GO
devices. To suppress the BO or GO output, the user must
assign the pertinent deviceto 0 (see !ASSIGN and !DEFINE
control commands in this chapter).

If no specifications are present, binary output on the BO
and GO devices, a source listing, and standard precision
mode are assumed by default.

18 RBM/Processor Interface

RBM/PROCESSOR INTERFACE

Ground rules common to all system processors are:
e All processors operate in the background.

o With the exception of the UTILITY program, processors
must use standard background operational label table
assignments for their 1/O requests. (See Table 2 for
the standard background operational labels.)

o The first character of each line of the listed output
from the processors is always interpreted as a vertical
format character (carriage control) and is never printed.
The RBM 1/O routines treat the vertical format properly
for the keyboard/printer, line printer, and magnetic
tape.

o When the RBM transfers control to a background pro-
cessor, the X register contains the address of the con-
trol card image, providing access to any parameters.

e At the completion of an assembly or compilation, the
processor writes two end-of-files on the LO device,
and then backspaces the LO device one file. The
M:CTRL routine will treat these operations for the
devices as described in the 1/O section. This permits
file processing of output on magnetic tape, if LO is
assigned to magnetic tape. The processor writes an
EOF on BO and GO at completion and then back-
spaces one file (GO and BO are separate options).

e The processor generally returns control to RBM by
means of a call to M:TERM. RBM will immediately
read from CC and if there is another control command
for the current processor, it will reload the processor
from the RAD.

o If overlay loading is required, the processor uses
M:SEGLD. The overlay operational label for the
background is PL.

e If an unrecoverable error occurs, the processor exits
to RBM with a call to M:ABORT and displays the abort
code in the X register and the abort location in the
A register.

e Since all standard RAD files are defined by the Job
Control Processor, the processors need not call
M:DEFINE, but must call M:CLOSE to release blocking
buffers in those cases where several RAD files are used
but are not all open at one time.

e The first ouput line to LO from an assembly or com-
pilation causes a page eject.

GO AND OVFILES

Figure 3 shows how the JCP and Extended Symbol or Basic
FORTRAN 1V use the operational labels GO and OV. The

Relocatable binary decks
copied directly from BI to
GO by JCP with anIREL

control command.

Assembler or compiler out-

put to both GO and BO.

\AJ

Overlay Loader takes
input from GO to form
executable OV.

JCP forms executable pro-
gram directly from Al fo
OV with an ABS control
command.

vy

Executable program; called

by ! XEQ command; loaded
by RBM subtask S:LOAD,

Figure 3. Use of GO and OV Files

GO and QV files are the files to which these operational
labels are assigned by the JCP and are standard default
files when no operational labels are specified. The GO
file is a blocked, sequential file that contains relocat-
able binary decks read from the job stack, and binary
ouput produced as a result of an assembly or compila-
tion. After each module is loaded onto the file, an
end-of-file mark is written and a backspace file is per-
formed. Thus, at any point within a job stack the

GO file contains all modules that have been loaded and is
in position to accept others.

The Overlay Loader may now use the contents of the GO
file to create an executable core image program and save
this program on the random-access OV file. Absolute bin-
ary decks produced by an assembly may also be written (in
executable core image form) onto the OV file by JCP
through use of the | ABS command.

RBM/Processor Interface 19

3. OPERATOR COMMUNICATION

SYSTEM COMMUNICATION

When events take place in the system that require operator
intervention, or when one job is completed and another job
begins, RBM informs the operator of these conditions by
messages on the keyboard/printer. All such messages from
the Monitor begin with two exclamation marks (11).

Generally, these messages require no operator response on
the keyboard/printer but may indicate that some peripheral
device needs attention. In some cases, the operator must
interrupt and key in a response after correcting the speci-

fied problem.

1/0 RECOVERY PROCEDURE

If a message concerns an 1/O error condition, the Monitor
I/O routines that generated the message will be waiting to
sense a change of state in the device. (A change of state
is defined as a change from manual to automatic, or from

Table 6.

automatic to manual and back to automatic, depending on
the initial condition.) When the change of state is sensed,
the operation is retried. Thus, if the device is EMPTY, it
need only be placed in the automatic mode. If there is a
PUNCHES error or a FAULT on the card reader, the reader
is unloaded, the bad card is corrected and replaced, and
the reader is returned to the automatic mode.

MONITOR MESSAGES

The messages itemized in Table 6 are output on the OC de-
vice. They are primarily for background program use but
can be used by foreground by specifying standard error re-
covery and "initiate and wait" in the M:READ, M:WRITE,
or M:CTRL calling sequence.

Real-time programs with special requirements can inform
the operator of special conditions and wait for an oper-
ator response.

Monitor Messages

Message

Meaning

ITABORT CODE xx LOC yyyy
are

CcC

The background job has aborted by reason of code xx (abort codes

mand error), a more explicitreasonwill be listed on the background
DO device. (Al abort messages and diagnostics are listed on the
DO device.) If the system is operating in an "attend" mode (see
Chapter 2), RBM will perform any required postmortem dumps and
then go into a waitstate after anabort. After a subsequent S key-in,
RBM will recover and attempt to process the next control com-
mand on the CC device. If not operating in the "attend" mode,
RBM will not go into a wait state but will perform any required post-
mortem dumps and immediately begin reading from the standard

1JOB or !FIN card is found.
the LL device, with an indication —a '<' preceding the command
to show that they are being ignored. ’

defined in Appendix C). If this was a CC abort (control com-

device, skipping cll control commands or data cards until a
All control commands are listed on

I1AL 1O ERROR'
11BEGIN WAIT

this

An irrecoverable 1/O error has occurred while accessing the ac-
counting file, normally because of a hardware failure or unavaila-
bility of operational label AL. The correct assignment of this
operational fabel is to RBMAL,SD. An attempt should be made to
recover the contents of the accounting file as stated above.

key-in and then an FG key-in to allow foreground modifications;
the foreground operational label AL may then be reassigned (e. g.,
TASSIGN AL = RBMAL,SD,F or 1ASSIGN AL = 0,F).

Note: Assignment of the foreground operational label AL to zero

If
recovery fails, the operator may gain control through a KP

will inhibit the logging of job stack entries into the
accounting file.

fThis alarm occurs only if the RBM accounting option has been exercised at SYSGEN.

20 Operator Communication

Table 6.

Monitor Messages (cont.)

Message

Meaning

1 1AL OVERFLOW'
1IBEGIN WAIT

The accounting file (RBMAL) cannot accept another entry. The
accounting file is allocated at SYSGEN and accommodates
74 entries. (The user may increase or decrease this capacity via
the RAD Editor.) At this point, normal error recovery will be a
key-in of KP to gain keyboard/printer control. Next, a key-in
of SY will permit access to the accounting file. The operator
should now assign the background operational label LO to o hard-
copy device (e.g., paper tape, card punch). Input of o | PURGE
control command specifying the clear option (i.e., !PURGE C)
causes the contents of the accounting file to be copied onto that
device and clears the accounting file. The job stack causing the
overflow can now be reentered.

HATTEND ERRORxx

JCP has read an erroneous contro! command while operating in the
ATTEND mode, in which case RBM goes into a WAIT state after
typing this message. After a subsequent S key-in, RBM will process
the next control command.

!1BEGIN IDLE

JCP has just read o 'FIN card (which completes a job stack) and
background has gone into an idle state. Processing will resume on
a new job stack following an unsolicited S key-in.

11BEGIN WAIT

The background has executed a WAIT request. An unsolicited
S key-in will continue background processing.

11BKG CKPT

Background has been checkpointed as a result of a foreground pro-
gram request.

11 BK RELEASE,dtnn

The specified device has been released for background use.

11BKG RESTART

Background has been restarted from its point of interruption.

CClI

JCP has begun to read control commands. This message occurs at
the beginning of a job and between steps within a job (e.g.,
when an assembly is completed). If CCis assigned to the keyboard/
printer (as a standard assignment, or ofter a KP key~in), the input
light on the keyboard/printer will indicate that RBM is ready for
input of a control command.

11dinn EMPTY

The device specified is in the manual mode and may be out of
paper, cards, or tape.

! 1dtnn ERROR [, TRK xxxx]

There has been a parity or transmission error on the device. If any
automatic retries were specified, they will have been performed
before this message is output. A CR device will indicate that an
error card is in the output stacker. Recovery procedure is described
above under "I/O Recovery Procedure". If it is RD, xxxx will be
the errored track number.

Mhis alarm oceurs only if the RBM accounting option has been exercised at SYSGEN.

System Communication

21

Table 6.

Monitor Messages (cont.)

Message

Meaning

11dtnn FAULT

Some condition on device type dt with physical device number nn
(hexadecimal) has caused this device to become nonoperational.
The recovery procedure is described above (in the discussion under
change of state). The operation is automatically retried when the
device goes into the automatic mode; it is neither necessary nor
possible for the operator to type in a response.

1l dtnn PUNCHES

An invalid punch combination has been sensed on an EBCDIC
image.

1ditnn RATE ERR

A data rate overrun has occurred. If any automatic retries were
specified, they will be performed after this message is output.

! dtnn UNRECOG

Device type dt with device number nn (hexadecimal) is not recog-
nized by the 1/O routines. If the device is a magnetic tape unit,
the requested drive may not be dialed in properly or power may be
off in either the unit or the controller.

! 1dtnn WRT PROT

Either the RAD is physically write-protected or a RAD file is logi-
cally write—protected. If a RAD file is logically write-protected,
an unsolicited key-in of SY will allow RBM to continue. If the
background is attempting an invalid operation, it should be
aborted.

I1END IDLE

RBM has gone out of the idle state and will begin reading control
commands from the CC device. Control commands will be ignored
until a 1 JOB command is input.

IIFG PARITY ERR, TCB=FFFF, LOC=FFFF,
A=FFFF, X=FFFF, B=FFFF

A foreground parity has occurred but the specified allowable limit
of foreground parity errors has not been reached.

IIFG PARITY ERX, TCB=FFFF, LOC=FFFF,
A=FFFF, X=FFFF, B=FFFF

A foreground parity error has occurred, The specified allowable
limit of foreground parity error has been reached, ERX indicates
that the task has been di<abled and terminated.

1IFG REQUEST,dtnn

A request has been made fo reserve the specified device. The
operator should prepare the device and then reserve it through use
of the FR key-in.

1'FG RESERVE,dtnn

The specified device has been reserved for foreground use.

22

System Communication

Table 6.

Monitor Messages (cont.)

Message

Meaning

I 1KEY ERROR,comments

The Monitor could not process an unsolicited key-in response. The
message usually indicates a format error on the key-in, where
comments may be one of the following:

AREA The wrong disk pack was mounted for an
'M' key-in.
DEVICE The channel for the device specified was not

defined at SYSGEN or this device is not
defined. Applies to 'M' and 'BT' key-ins.

FIXED Performing the requested mount would entail
undefining more than one other area.

OVFLOW The Master Dictionary, Alternate Track
Pool, or IOCS table length will not allow
this key=in to be processed.

DFN/OP The Device File table or Operational Label
table has overflowed.

10 ERR The device specified in the 'M' key-in cannot
be correctly accessed.

TEMP STACK The Temp Stack has overflowed.

I1MACH. FAULT: TCB=FFFF, LOC=FFFF,
X=FFFF, B=FFFF

Direct 1/O to an unrecognized device has been attempted twice
and a watchdog timeout has occurred.

I IMACH. FAULX: TCB=FFFF, LOC=FFFF,
A=FFFF, X=FFFF, B=FFFF

Direct 1/O to an unrecognized device has been attempted twice at
the same location. The foreground task subsequently is disabled
and terminated.

I MESSAGE comments

A I MESSAGE control command has been read. The comments field
may confain tape mounting or other instructions. RBM continues
to read from the CC device after the message is typed out.

I'1PAUSE comments

A 1PAUSE control card has been read. The comments field may
contain tape mounting information or other instructions. A control
panel interrupt followed by an S key-inwill cause RBM to continue
reading from the job stack.

11POWER ON

The system has experienced a power failure, and the power fail-
safe option has been implemented. This message is written at the
RBM interrupt level, and consequently, any foreground tasks will
have been completed before this messsage is typed. At this point
the operator should terminate background, and when foreground
is completely idle, he should reboot RBM from the RAD and
restart the background. The message is output as soon as RBM has
control.

System Communication

23

OPERATOR CONTROL

UNSOLICITED KEY-INS

Because of the possible delays associated with messages to
and from the operator, no devices used for time-critical
operations should time-share an I/O channel used for oper~
ator communication. (Normally, operator communication
is on a keyboard/printer.) All background references to the
operator output device should be to operational label OC.
A frequent method of operator control is in response to a
specific request from a foreground or background program.
In this case, there is no standard format.

The operator may also desire to exercise control over the
background programs on an unsolicited basis. This control,
termed an unsolicited key-in, is initiated by the operator
activating the INTERRUPT switch on the Sigma 2/3 Pro-
cessor Control Panels. This action causes an interrupt
into the Control Panel Task. The task sets a flag in the
RBM Control Task status word, and then issues a Write
Direct to trigger the RBM Control Task. The Control Panel
Task then exits.

When the RBM Control Task becomes the highest priority
task in the system (that is, when all real-time foreground
tasks are nonactive), it issues an output message

TKEY-IN

and requests input (up to 20 characters) from the operator.
Each key-in must be terminated with the NEW LINE @
code. The backspace (¢) and delete (EOM) codes may
be used before the NEW LINE is typed to correct a mis-
typed key=-in. The analysis and subsequent action from the
unsolicited key-in is performed at the RBM Control Task
priority level.

Specific key=in responses under RBM are:

BL oplb = DFN [,P] Permits change of operational label
assignments during running of background programs.

where
oplb is an assigned operational label.
DFN is a decimal number (00 through 53).
P is an optional permanent change until system

reboot.

BL. oplb = opib [,P] Alternate version of BL oplb=DFN[,P]

BR[dt]nn Release the specified device for background
use. The characters representing the device type are
optional but, if input, will be used to validate the request.

BT dn, track Add track number "track" to the Alternate
Track Pool for device dn. If the Alternate Track Pool is

24 Operator Control

not large enough or if dn is not a RAD device, an error
message will be written.

C:TCB[,code] Connect the specified real-time fore-
ground task to the dedicated interrupt location.

where

TCB is the address of the task control block for this
task. (If the value is hexadecimal, it must be
shown as +xxxx.) If the Overlay Loader initializes
the TCB by means of the TCB parameters, it does
so completely, using load information and values
on the TCBand BLOCK cards. No partial initiali-
zation of a TCB is allowed with the exception of
the blocking buffer pool. If a user builds his own
TCB, the TCB must begin at the execution loca-
tion plus the "temp" value specified on the

Loader 1$ROOT command.

code if present, overrides the initial code in the
TCB for the task; a code of 7 would cause the
level to be triggered. If code is not present, it
will be derived from the task control block.

cc Remove the keyboard/printer override of the CC
device. The next control command will be read from the

background operational label CC. This operator key-in is
identical to the CC control command.

cp Clear card punch and simulate an unusual end con-
dition in the punch. Thekey-inisrequired if the card punch
fails to recover after a JAM A or JAM B. Operator should
first manually clear the punch and restore it to READY, then
interrupt and key in CP. The last (faulty) card will be re-
punched and cards in the normal stacker will be in the
correct sequence.

DB xxxx,yyyy Dump locations xxxx to yyyy if re-
quested; otherwise, immediately dump all of background
memory on background device DO. This key~-in can be in-
put at any time for debugging purposes. The dump will be
in hexadecimal.

DE Causes Debug (if Debug is part of the system) to
request the input from the keyboard/printer.

DF Fxoxxx, yyyy Dump locations xxxx to yyyy if re-
quested; otherwise, dump all of foreground on background
device DO. The dump will be in hexadecimal.

om' XXXX,YYYy Dump locations xxxx to yyyy if re-
quested; otherwise, immediately dump all of RBM on back-
ground device DO. The dump will be in hexadecimal.

p{T]mm/0D [/YY][,HRMN]
within RBM,

Reset the calendar date

fSYSGEN options (response to INC MISC query).

o[T]MM,DD[, Y Y[,HR,MN]
D [TJMM/DDL /YY][,HRMN]

Alternate version of

DR dn' XXXX,YYyy Perform a selective dump of the RAD
device dn to background device DO, where xxxx and yyyy
are the first and last sectors of the block of sectors to be
dumped. If dn is omitted, the RAD containing the SP area
will be dumped. If dn refers to an undefined or non-RAD
device, an error message will be written. If a‘consecutive
series of sectors are all zeros, they will be skipped unless
the last sector of this zero series is yyyy, in which case it
will be dumped. For example, if "DR 100, 200" is keyed
in, and sectors X'1B0' through 'X'215' contain zeros, X'100'
through X'1CF' and sector X'200' will be dumped. This
key-in applies only to the 7202 and 7204 RADs.

The RAD dump routine performs RAD input with interrupts
inhibited, and therefore should not be used when response
time is critical.

F Dump the contents of the File Control Table number
(set in the DATA switches) on the operator'sconsole. DATA
switch value is DFN in hex and must be a SYSGEN number.

FG[,8] Must precede any job stack operation affecting
the foreground or the operation will be aborted. This
key~-in is effective until the next ! FIN or ! JOB command
is encountered. Since the key-in is normally input in
response to a | PAUSE command, the optional ,S key-in will
clear the idle state.

FL oplb = DFN[,P] Permits foreground operational label
assignment changes during system operation. The changes
will be reset to SYSGEN values upon system reboot.

where
oplb is assigned operational label,
DFN is a decimal number (00 through 53).
P is an optional permanent change until system

reboot.

FL oplb = oplb[,P Alternate version of FL oplb=DFN/,P
)

FR[dt]nn Reserve the specified device for foreground
use. The characters representing the device type are op-
tional but, if input, will be used to validate the request.
The device type will be required to distinguish PT40 from
KP40, etc.

Hf Input hexadecimal corrector cards from background
device CC. (See Appendix G for the format of the corrector

fSYSGEN options (response to INC MISC query).

cards.) To patch program segments, DATA switch O must be
placed in the "1" state. This causes RBM to type ! I BEGIN
SEG xx, where xx is the segment number (xx equals zero
for the root), and go into an idle state after each segment
is loaded. Correctors can then be loaded to the segment
following an H key-in. An S key-in will cause RBM to
resume operation. Correctors modifying foreground must be
preceded by an FG key-in.

KP Begin reading control commands from the keyboard/
printer. The key-in goes into effect after the next 11 CCI
message and stays in effect until a CC key-in or 1CC con-
trol command is encountered.

Lar,dnf,wp] Area mnemonic "ar", with a write protect
code of “wp", will be written on sector 1 of device dn and
sector 2 will be written with zeros. "wp" must be one of the
following:

blank, D,or N no write protect

B background write only
F foreground write only
R RBM write only

The L (Label) key-in is an implicit 'M* key=in. Error con=
ditions and causes are described under the ! 1KEY ERROR
message in Table 6.

M ar,dn Mount area "ar" on device "dn". The operator
must mount the disk pack containing area "ar" on device
"dn" before making this key-in. Unless "ar" is "Xn" the
disk pack will be read to determine if it actually is area
"ar". If this is true, area "ar" will be added to the Master
Dictionary and made available for general use, including
use by the RAD Editor and M:ASSIGN. Error conditions
are described in 1!KEY ERROR message in Table 6. If
an error occurs, area "ar" will be undefined and any areas
implicitly "dismounted" will be undefined.

Q name Queue specified program for subsequent exe-
cution in nonresident foreground. As soon as this space is
free, the requested program is loaded. If the queue stack
is full or if the specified program is not found in the direc-
tory, an error message is output on the assigned foreground

oplb, DO.

S Continue processing if Monitor is in an idle or wait
state. If there is a waiting background program, continue
processing that program. If there is no background program,
begin reading control cards from the CC device. (Monitor
can get into the wait state from a W key=-in or ! PAUSE com-
mand or into idle from a ! FIN command.)

Operator Control 25

SY[,s] Permit modification of system files on the RAD
to take place until the next 1JOB or ! FIN command is en-
countered. This key-in is a double check (similar to the
FG key-in) to prevent accidental destruction of the RAD
files. Since this key=in is normally input in response to a
! PAUSE command, the optional ,S will clear the idle state.

T HRMN Reset the RBM system time.
T HR,MN Alternate version of T HRMN.

uL Force an unload of the program occupying the non-
resident foreground area. Note that operator key=-ins can
interrupt the background program at any time. Operator

26 Operator Control

intervention cannot take place while there are active fore-
ground programs, and will be delayed until they terminate.

W Background goes into a wait state.

X Abort the background job with any dumps requested,
and output error code OP and a printed message showing
the location of last background instruction executed. If
the Postmortem Dump program is active, it will also be
terminated.

z Terminate the current background job including the
Postmortem Dump program without performing postmortem
dumps (abort code ER is output).

4. MONITOR SERVICE ROUTINES

BRANCHING TO SERVICE ROUTINES

Under RBM, foreground and background programs may make
calls on the Monitor to perform various services or privi-
leged operations. (See Table 7.) For background requests,
a branch to protected memory will trigger the protection
routine which examines the branch for validity. If the
protection violation is one of a permissible set of "con-
trolled" violations, the branch is permitted; otherwise, the
background job is aborted with a suitable error message
giving the location to which the branch was attempted. If
the branch is valid, the protection routine will permit the
branch to the appropriate Monitor service routine.

All service routfines are completely reentrant. Hence, they
can be used by multiple tasks on a completely independent
basis. Table 7 shows the routines requiring temporary space
in the user's temp stack.

There are two different methods of executing a branch to
one of these Monitor service routines: the conventional
method is to declare the service routine name as an ex-
ternal reference and have the Overlay Loader satisfy the
reference at load time. (In this case, the address lit-
eral will be in the user's program, and will be filled in
by the Overlay Loader.) The other method is to branch
indirectly through the address literal in the zero table
(see Appendix B) using the absolute address given in
Table 7. This is a useful technique for an absolute fore-
ground program assembly, or for a processor or other pro-
grams that are self-relocating.

The B register is always saved and restored since it is used
to point to temporary space. All otherregistersare volatile.
The return address (specified by the L, T, or A register)
must point to the background area if the routine is called
(branched to) from the background. Otherwise, a protec-
tion violation abort occurs.

Certain Monitor service routines are nonresident overlay
routines. The Monitor subroutine Q:ROC controls the load-
ing of the RBM overlay area. The following Monitor service
routines are nonresident overlay routines:

M:ASSIGN M:DOW
M:CLOSE M:LOAD
M:COC M:OPEN
M:CTRL M:RSVP

M:DATIME M:WAIT
M:DEFINE

Actually, portions of the above routines are resident. The
resident portion of M:CLOSE, for example, is as follows:

M:CLOSE RCPYI P,T
B Q:ROC
DATA 'ID NN!
where
ID represents the segment identifier of the non-

resident overlay section of M:CLOSE.

NN is the temp stack requirement.

Q:ROC will call M:RES to reserve the appropriate amount
of temp space, will read in the required segment, and will
transfer control to the overlay routine which runs and re-
turns to Q:ROC. Q:ROC will reload the overlay area if
cqopropricltet and will then release the temp space and re-
turn to the caller by a call to the Monitor service routine
M:POP. Any calls to the above Monitor service routines
will require use of the RAD; therefore, the requesting task
must provide in its TCB for use of the RAD. In addition,
particular attention should be given to the maximum tempo-
rary stack requirements of these routines.

SERVICE ROUTINES

M:I0EX (General 1/O Driver)

M:IOEX provides direct control by background programs,
the Monitor, or foreground real-time programs over all
1/O operations on the buffered 1/O channels for centraliza-
tion of 1/O interrupts. All M:IOEX control functions are
exempt from channel time limits. The calling sequence is

LDX ADRLST
RCPYI P,L
B M:IOEX

ADRLST is a pointer to the argument list, which is a set
of two, three, or four consecutive words in the user's

"It the overlay area was originally occupied by an active

Monitor service routine, the routine must be reloaded. If
the requested routine is the one occupying the overlay area,
no loading will be required.

Monitor Service Routines 27

Table 7. Transfer Vector for Monitor Services
Address Words of Temp Required

Dec. | Hex. ADRL for Purpose of This Routine Min. Max.
199 c7 M:FSAVE M:SAVE Function if Register Previously Saved 0 0
200 | C8 M:IOEX Device-Dependent 1/O Driver 16 16
201 Cc9 M:READ Device-Independent Read Routine 25 38
202 CA M:WRITE Device-Independent Write Routine 25 38
203 | CB M:CTRL! Device-Independent Control Routine 16 43
204 | CC M:DATIME Calendar Date and Time of Day 18 18
205 CD M:TERM Normal Termination of Background 0 0
206 | CE M:ABORT Abnormal Termination of Background 0 0
207 | CF M:SAVE Save Registers on Real~Time Interrupt 0 0
208 DO M:EXIT Restore Registers on Foreground Exit 0 0
209 Di M:HEXIN Hexadecimal to Integer Conversion 0 0
210 D2 M:INHEX Integer to Hexadecimal Conversion 0 0
211 | D3 M:CKREST Checkpoint/Restart Background 0 52
212 D4 M:LOAD! Load Nonresident Foreground 13 13
213 | b5 M:OPEN? Open Blocking Buffer for RAD File 13 13
214 Dé M:CLOSE Close Blocking Buffer for RAD File 14 14
215 | D7 M:DKEYS Read Data Keys 0 0
216 D8 m:wartt Execute Wait Loop From Background 15 51
217 | D9 M:SEGLD Load Overlay Segment 35 63
218 DA M:DEFINE' Define RAD Files in Background Temp Area 13 13
219 | DB M:ASSIGN! Assign Operational Labels 18 56
220 DC M:POP Release Dynamic Temp Space 0

221 DD M:RES Reserve Dynamic Temp Space 0

222 | DE M:OPFILE Convert Operational Label to Device-File Number 0

223 DF M:RsVP! Reserve or Release Peripherals 20 51
224 | EO M:DOW! Diagnostic Output Routine 13 51
225 | E1 m:coct Communications Handler 25 25

These routines are nonresident RBM overlays. All nonresident RBM overlays require a minimum of 13 temp cells to load

the routine.

Notes: 1.

To branch to one of these routines, branch indirectly through the specified address above after RCPYI P,L
(except M:RES which is called following an RCPYI P,T).

The minimum temp space required is the number used by the routine itself. The maximum temp space is the
number required by this routine and those it calls. For example, M:READ (25) may call M:OPEN (13) to
open a blocking buffer. This call would require 38 temp cells.

Under normal usage, M:SEGLD requires a maximum of 35 temp cells. However, 61 are required to output
the message ! 1BEGIN SEG xx. This is an RBM assembly option (i.e., Debug = yes).

M:CKREST requires 52 temp cells if the checkpoint is performed at the priority level of the calling task.

Use of any device that has nonresident pre-1/0 and post-1/O edit routines and nonresident error recovery rou-
tines associated with it requires 38 temp cellsby M:READ/M:WRITE. These include KP, PT, LP, B7, CR, and CP.

28

Service Routines

program or in a temporary stack. This argument list ap-
pears as follows:

word O
FIA|Z 0 oP
01 2 3 12 13 15
where
F=0 if word 1 is an operational label or device

unit number.

A=1 if AIO Receiver is specified in word 3 (fore-
ground option only).

A=0 if no AIO Receiver is specified (three-word
call, then).

Z=1 if AIO Receiver is acknowledged on zero
byte count interrupt.

Z=0 if acknowledged on channel end only.

o°P is the code for the operation to be performed:

0 for SIO
1 for TIO
2 for TDV
3 for HIO

4 for "check previous data transfer"

word 1
Operational label or file number

0 15

word 2
Address of first IOCD (for SIO only)

0 15

word 3
Address of AIO Receiver (for SIO only)
0 15

Return is fo the location in the L register on the call
to M:IOEX. B register is always saved.

The Overflow (Ol) and Carry (CI) Indicators, the A register,

E register, and (in some cases) X register are used to return

status information on the required operation. The complete
list of status codes is given in Table 8. In this table, DSB
stands for Device Status Byte, OSB for Operational Status

Byte, Byte Count Residue is from the even 1/O channel
register at channel end, and Dev.No. stands for the device
number of the current device.

Note that no 1/O error recovery has been attempted. DSBs
and OSBs are just as received from the 1/0O system hardware.
These statusreturns are organized so that a quick and simple
test will show the nature of the return. If the user wishes
to keep trying to initiate the I/O operation or keep check-

ing for completion, it is possible to loop back to the call
to M:IOEX.

The user can use M:IOEX to read/write on the RAD or
any peripheral device that uses standard Xerox Sigma pe-
ripheral responses. For input/output operations to the
RAD, the user must first give a seek order and then the
appropriate data-transfer request. The user must also
perform his own file management. If multiple tasks use
the RAD, they must cooperate in some way so that the seek
address is not modified by some higher-level task before the
data operation is initiated. Note that a user must always
issue a "Check/Write" (op code of 4) after each read or
write request.

The following rules govern the use of M:1OEX for a RAD:

1. Adevice-file name of the form XXdn must be included
in the set of SYSGEN input parameters following the
heading DEVICE FILE INFO, where XX indicates that
this is a special-purpose device for use with M:1IOEX,
and dn is the hardware device number of the RAD. The
M:IOEX calling sequence must contain the device-file
number corresponding to this device-file name, or must
contain an operational label that is assigned to the
device-file number.

2. The set of SYSGEN input parameters following the
heading RAD ALLOCATION must include provisions
for reserved tracks that are not to be included in the
areas allocated for RBM file management. This can be
accomplished by

a. Assigning the system RAD to a device number other
than XXdn. This method requires two RADs, one
containing the RBM area assignments, and the other
available for use with M:1IOEX.

b. Allocating only part of a RAD for RBM area assign-
ments, leaving the remainder available for use

with M:IOEX.

c. Allocating part of a RAD for M:IOEX use by speci-
fying that a number of tracks be skipped between
RBM areas with an allocation parameter of SK =n,
where n is the number of tracks.

d. Any meaningful combination of the above.

Service Routines 29

Table 8. Return Status from M:IOEX

E Register A Register X Register
Operation Major Status Ol Cl
1-7 8-15 0-7 8-15 0-15
SIO, TIO, Device number hs
TDV, HIO not recognized] ! - Recognition Code 0
Invalid call or oplb | 0 0 S 4or8 0
All
oplb equals zero 0 0 e 2 0
SIO cannrof be 0 1 Current file TIO Dev. No. 0
accepted Number
S10 Channel busy' o | o Active file DSB Dev. No.| -1
Number
Successful Current file SIO
initiation 0 0 Number DSB Dev. No. 0
SIO cannot be 0 1
accepted Current file TIO
TIO Number DSB Dev. No.
Other 0 0
Device abnormal
condition 0 !
Current file TDV
DV . Number DSB Dev. No. T
Device normal
o 0 0
condition
Device operating
when HIO 0 1
received .
HIO Current file HIO Dev. No. _
. Number DSB
Device not oper-
ating when HIO 0 0
received
1/O operation Current file SIO
in progress] 0 Number DSB Dev. No.
1/0 check 1/O completed 0 1
unusual end E AIO Byte Count
Flag OsB DSB Dev. No. Ry .ed on
1/O completed 0 0 (Bit 7) esidve
normal end

"Use BXNC to test both conditions simultaneously.

30

Service Routines

M:IOEX FUNCTIONS

TIO, 1DV, HIO In these operations, the request is per-
formed immediately and the device status bytes are returned
if the device is recognized. The AIO Receiver is ineffec-
tive for these operations.

SIO The SIO operation is initiated if there is device
recognition and the channel is free (which may not be the
same as "device free" or "device controller free" for chan-
nels with several devices).

The SIO is issued even if the device is in the manual mode.
It is therefore the responsibility of the user's program to test
for the manual mode both before and after the SIO request,
and to inform the operator by a suitable message.

An HIO can be used to abort an 1/O operation. This results
in setting the channel end device ready for a new activity.
Since status is returned, an 1/O check operation is not

returned.

Protection checks are performed only for background 1/O

requests. Background is not permitted an AIO Receiver,
and a receiver is ignored if requested from the background.
Background operations specifying data chaining are not

allocated, This is due to the structure of the IOCDs, 1/O
Data Tables, and the requirements for the absolute protec-
tion of foreground programs (see "End Action" in Chapter 5).

If the request for 1/O action is for an odd number of bytes,
the order byte must be properly set in the right half of the
word, as specified in the Sigma 2 and Sigma 3 Computer
Reference Manuals. M:IOEX does not move any data or
order bytes.

When using foreground data chaining, it is very important
to set the interrupt flags on all IOCDs except for the one
pointing fo the "order" byte, since an unusual end condi-
tion in one of the IOCDs without the interrupt flag being
set will cause the I/O to terminate without an interrupt,
and the channel may then "hang up" waiting for the in-
terrupt because the RBM tables indicate that the channel
is still busy.

The Monitor does not alter the user's data in any way. If
an 1/O interrupt is received and there is no AIO Receiver
specified (and the device is still busy), the I/O interrupt
is ignored and the channel remains active.

The user's program must determine whether there was a
channel end or an unusual end condition. If the return is
for a busy device or channel, the program can loop on this
request until the operation is successful.

Since only higher priority tasks can take control from the
task issuing the request, the routine issuing the request
gains control of the desired device and/or channel as soon
as the current operation is complete. The M:IOEX routine
inhibits interrupts for a period of less than 100 microseconds
during the loading of the I/O channel registers and the set-
ting of the activity status for the device and channel. Thus

a higher priority task can always interrupt up to the point
when the 1/O channels are loaded during the initiation of
an I/O request.

1/O CHECK This operation tests for channel end on the
previously requested 1/O operation by testing certain flags
within the RBM 1/O tables. The flag is set by the /O in-
terrupt task when the device interrupt occurs. Thus, no
TIOs are required to determine when the operation is com-
plete. Since the TIOs do consume some 1/O time (particu-
larly if executed repeatedly in a test loop), the method of
checking for I/O completion described herein is desirable.
The Monitor saves the operational status byte and the byte
count residue from the completion of the 1/O operation,
even though another device may have used the channel be-
fore the end-action check is made by the requesting task.

The following restrictions are pertinent in using M:IOEX:

1. RBM will not necessarily recover automatically from
the results of an HIO for most devices. Operator in-
tervention may be necessary.

2. Background programs cannot specify data chaining.

3. Background programs must specify an interrupt.

M:READ (General Read Routine)

M:READ provides device-independent input with standard
editing and checking. Standard error detection and cor-

rection is optional on each call. The calling sequence is
LDX ADRLST
RCPY1 P,L
B M:READ

ADRLST is a pointer to the argument list, a set of two to
six words in the user's program or in a temporary stack.
This argument list appears as:

word 0
F| A|W|E]|R 0 ORDER
0 1 2 3 45 7 8 15
where
F=1 if a device-file number is specified.
F=0 if an operational label or device unit number

is specified.

A=1 if an AIO Receiver address is specified
(specifiable by foreground only).

A=0 if no AIO Receiver is specified.

Service Routines 31

W=1 if wait for completion is unconditional.

W=0 if wait is for "initiate and return" only;
return is immediate if operation cannot be started
at once. (The minimum-seek algorithm does not
apply to RAD "no wait" operations.)

E=1 if standard error recovery is to be performed
| at channel end.
I E=0 if no error recovery is to be cﬂ'empi'ed.iL
I R=1 if a RAD granule displacement is specified
(can only be specified for random-cccess RAD
files).
if a RAD granule displacement is not

R=0
l specified.

ORDER is one of the following permissible pseudo
input orders:

Order Operation

X'00' Return information about this device
and file.

X'02' Read binary.

X'04' Check previous input for completion
(ofter a "no wait" initiation).

X'06' Read automatic.

X'0C' Read backward (9-track magnetic
tape only).

word 1
Operational label or file number
0 15
word 2
Address of buffer to receive data
0 15

Buffer must be in background if called by a background
program. Also, buffer must not overlap active temporary
storage or unavailable memory.

1’For magnetic tapes, RAD, or disk pack, five attempts
for error recovery will be made if E is specified. If 1/0
without a WAIT is specified, error recovery will not be
performed until a "Check/Write" is issued by the user.

32 Service Routines

word 3

Number of bytes to transmit

0 15

Byte count must be an even number when reading from RAD
files and cannot exceed 65,536. For all other devices the |
byte count may be either even or odd but cannot exceed
8192. 1If the byte count is even, input data stored in the
user's buffer starts in the left-hand byte; if odd, data starts

in the right-hand byte.

word 4

AIQ Receiver address or RAD granule displacement
0 15

If A=1 (in word 0), this is the address of the closed AIO
Receiver subroutine called by the 1/O interrupt task at
channel end. If A =0, this is the RAD granule displacement
(see word 5).

word 5

RAD granule displacement (optional)
0 15

If an AIO address is specified (A =1 in word 0), word 5
indicates the displacement of the granule from the start of l
the file (starting with o displacement of zero) where the
1/O transfer begins. Word 4 is the RAD granule displace-
ment if A =0,

Return is always to the location specified in the L register.
The B register is always saved.

The E, A, and X registers all contain status information on
the return, as shown in Table 9. 1/O completion codes

are listed in Table 10. Return is always immediate if there
is a calling sequence error, in which case the E register is
negative upon return. For the case where a wait is speci-
fied, the 1/O is initiated and the M:READ routine loops

until the operation is complete. When "initiate and no-
wait" is specified, an SIO is issued before the return if the
device is recognized, is currently free, can accept an SIO,
and is not in the “"manual" mode (unless M =1 in word 0).

If any one of these conditions is false, the M:READ routine
returns immediately with the appropriate indicators set. If
the channel or device is busy, the caller can either loop
back to the call to M:READ or switch to another device.

The "wait" flag has meaning whether this is an initiate or

a check order. Error recovery is attempted if specified

before the final return is made.

On a check operation, the byte count returned in the X
register may not be meaningful if the calling sequence does
not specify the same count as the initial read. If the order

Table 9. Return Status from M:READ, M:WRITE, M:CTRL

Operation Major Status Action E Reg. A Reg. X Reg.
All operations Operational labels not Return immediately -1 8 t
valid
Calling sequence error Return immediately -1 4 t
Operational label is set Return immediately 0 t
to zero
Unrecoverable 1/0O error Return after error recovery -1 1 t
attempt, if any
Illegal sequence of RAD Return immediately 0 9 t
operations
Blocking buffer not Return immediately 0 10 t
available
Initiate 1/0O Channel and device are Initiate /O and return. 0 0 0 or -1
and no wait free and in automatic Status in X register only
meaningful if A=1 in the
call. X=-1if the AIO
Receiver will not be ac-
knowledged; otherwise,
X=0.
Channel and/or device Return immediately 0 -1 t
are busy
Manual intervention is Return immediately -1 -1 t
required (manual mode
or no device recognized)
Check and 1/0O still in progress Return immediately 0 -1 t
it
no wat 1/O complete Return after end- 0or -1 comple- Byte
action, if any tion code count
Initiate and Channel and device are Initiate I/O and wait
wait free and automatic for completion
Channel or device Wait and keep trying
are busy
Device number is not Type out the proper
recognized or is write- message to operator
protected and retry
Device is in manual Type out EMPTY mes-
mode sage to operator and
retry
Initiate and 1/0 still in progress Wait, and keep
wait or check checking
d wait
and wal I/O complete Perform any end- 0or -1 comple- Byte
action and return tion code count
frans-
mitted
f ope
Unspecified

Service Routines

33

Table 10. I/O Completion Codes

E Reg. A Reg. Meaning Comment

0 0 Operation successful. X register contains the number of data bytes
transmi tted.

-1 1 Unrecoverable 1/0. If error recovery was specified, the maximum number
of retries have been unsuccessfully attempted.

0 2 Operation not meaningful for Either an operational label was assigned to file zero

this device. or 1/O operation is not meaningful for the device.

0 3 End-of-file encountered. Significant only for magnetic tape and sequential RAD
files (except in automatic mode when significant also
for cards, paper tape, and keyboard/printer).

0 4 End-of-tape encountered. Significant only for magnetic tape or sequential and
random-access RAD files.

0 5 Incorrect record length. For read operations, the requested byte count does not
equal the device's physical or logical record size. For
write operations, the requested byte count is greater
than the device's physical or logical record size. For
either read or write, the actual byte count transmitted
is returned in the X register.

0 6 No 1/O pending for this check Error in I/O buffering. An initial no-wait I/O request

operation. either was not issued or was rejected.

0 7 Device is write-protected. Significant only for writing on magnetic tapes and RAD
files.

0 8 Beginning-of-tape encountered. Significant only for reading backward and for position-
ing magnetic tapes and sequential RAD files via
M:CTRL.

0 9 Illegal sequence of RAD Significant only for sequential RAD files.

operations.

0 10 Blocking buffer unavailable. Significant only for blocked or compressed sequential

RAD files.

code is X'00', the following device status information is

TDV device status byte (bits 0-7) and physi-
cal device number (bits 8-15).

returned:
Register Status Information
A Device name (EBCDIC).
E
X

M:READ FUNCTIONS

Physical standard record size (bytes) for non=-
RAD files or granule size for RAD files.

M:READ is designed to read one physical record from the
specified device regardless of device type and whether the

34 Service Routines

record is EBCDIC or binary. Therefore, M:READ will set
up the proper order bytes for the actual device, using the
"pseudo order byte" given in the call to M:READ only as
a guide. The user may request fewer bytes than are in the
record and only this number will be returned in his buffer.
However, if more bytes are requested than are in the rec-
ord, only the bytes in the record will be read. In any
case, the actual number of bytes read will be returned in
the X register when the completion code is returned, and
if this is not the same as the number of bytes requested, an
"incorrect length" code will be returned. While it is not
always necessary for the user to check all possible return
codes, it may be usefu! to print them out to aid indebugging.

Using M:READ, a user can read 80 EBCDIC bytes regardless
of whether they come from cards, paper tape, magnetic
tape, keyboard/printer, or RAD. M:READ will perform

standard editing from paper tape to give a record a format
identical to card image output.

By using a "read and no wait" followed later by a "check
for input complete" the user can effectively overlap input
and compute.

The order code X'00' is used to request information about
an unknown device, and may be helpful in determining the
opfimum blocking sizes to use.

REAL-TIME PRIORITY

All of the 1/O routines are reentrant, and any input can be
interrupted for a higher-priority task up to the "point of no
return" of setting Monitor status flags and loading channel
registers. External and internal interrupts are inhibited for
up to 100 microseconds of CPU fime during the actual SIO
sequence. Keeping a high priority task active and looping
on an input request to a busy device enables the task to
seize control of the channel or device as soon as the cur-
rent 1/O operation completes.

SPECIAL EDITING FOR CARD READER

Read Automatic. Any cards with a "1" and "2" punch in
column 1 are automatically read as binary; all other cards
are read as EBCDIC or BCD. (For nonstandard binary cards,
the user must use "read binary".) It is possible to specify
that all cards from a certain file are to be read as BCD and
converted by the M:READ routine to EBCDIC before being
returned to the user. Since this would apply only to one
file, it is possible to read some cards in EBCDIC and some
in BCD from the card reader. (BCD card codes are pro-
duced by an IBM 026 keypunch, and EBCDIC card codes
are produced by an IBM 029 keypunch.) The EBCDIC
record size is 80, and the binary record size is 120 bytes.

An incorrect length status is returned if the requested byte
count does not exactly match. An "end-of-file" status is
returned when an EBCDIC card that begins with |EOD is
input into the user's buffer. An "end-of-tape" status is
never returned.

Read Binary. An "incorrect length" status is returned if
the requested byte count does not equal the maximum num-
ber of bytes requested in the calling sequence. The num-

ber of bytes requested, up to a maximum of 120, are input
in the user's buffer. "End-of-file" and "end-of-tape" status
codes are never returned.

SPECIAL EDITING FOR PAPER TAPE OR KEYBOARD/
PRINTER

Read Automatic. All input from paper tape or keyboard/
printer is initiated in a one-byte-at-a-time mode. From

paper tape, the read order is always"read ignoring leader".

If the first byte is a code of X'1C', X'3C', X'FF', X'9F',
X'BF', X'DF', or X'78' (which can only happen with paper
tape), the M:READ routine switches to a binary mode and

reads up to 119 more bytes (for a total of 120 in the record).
The code byte will be the first byte in the user's buffer.

Code bytes are all invalid EBCDIC codes in the sense that
they are not printable graphics or control codes. Since
they are all supersets of the card reader "1 and 2 punch"
rule for column one, the same codes for "read automatic™
can be used for the card reader as for paper tape and, in
both cases, the code is part of the user's data buffer. If
the first byte from the paper tape or keyboard/printer is not
one of the binary codes M:READ continues to read one byte
at a time until a NEW LINE code is encountered.

When a NEW LINE code is encountered, input transmission
is ferminated and the line image is filled out with blanks

to the requested byte count. The NEW LINE code is not

transmitted to the user's buffer. (If a NEW LINE code is
the first code in the input line, it is ignored.)

Thus, all EBCDIC records are of variable length, up to the
maximum requested or until a NEW LINE is encountered.
Further, EOM and cent (¢) have special meanings within
the user's data line. An EOM causes the entire line up to
the present position (including the EOM byte) to be dis~
carded. A ¢ sign acts like a backspace. For each £ sign
received, this byte and the byte preceding it are thrown
away.

Whenreading binary records in the automatic mode, 120 bytes
are read regardless of the number of bytes requested. For
EBCDIC records, the paper tape is read up to and including
the NEW LINE code. For either EBCDIC or binary records,
not more than the maximum number of bytes requested is
transmitted to the user's buffer. The requested byte count
must be 80 for EBCDIC records and 120 for binary records.
Any other byte counts result in an "incorrect length"
status return.

An "end-of-file" status is returned when an EBCDIC record
that begins with 1EOD is input into the user's buffer.

Read Binary From Paper Tape. The Read Binary order for
paper tape is "read ignoring leader". The physical record
size is the number of bytes requested by the user's input.
The next record starts immediately following the last byte of
the previous record and the requested byte count determines
the end-of-record. "Incotrect length" and "end-of-file"
status codes are never returned. "End-of-tape" status is
not returned, even when the paper tape runs off the reader.

Read Binary From Keyboard/Printer. A read binary order
causes the keyboard/printer to read the exact number of
bytes specified. RBM performs no editing, and no bytes
(including NEW LINE codes) are considered control bytes.
"Incorrect length", “"end-of-tape", and "end-of-file"
status codes are never returned.

SPECIAL EDITING FOR MAGNETIC TAPE

Read EBCDIC or binary. Binary and EBCDIC modes are
identical on 9-track tape, and M:READ supports only the

Service Routines 35

BCD and packed-binary modes. for 7-track tapes. Only the
number of bytes requested is transferred to the user's buffer
regardless of the physical record. "Incorrect length" status
is returned when there are either too few or oo many bytes
in the input record, and the tape is positioned at the start
of the next physical record.

"End-of-file" status is returned when a file mark is sensed
on the magnetic tape; "end-of-tape” status, when the phys-
ical end-of-tape mark is sensed and standard error recovery
is specified. If both are sensed at the same time, the "end-
of -tape" stafus is returned.

The Read Backward order produces a buffer with data in an
inverted condition. If the tape is at the load point when
the Read Backward order is given, no data is transmitted
and "BOT" status is returned. Read Backward will be
ignored for devices other than 9-track magnetic tape.

SPECIAL EDITING FOR SEQUENTIAL RAD FILES

Read Automatic or Binary. On a RAD, binary and EBCDIC
modes are identical. When reading from blocked files, a
blocking buffer must be supplied. If the calling program
has not specified a blocking buffer, M:READ will call
M:OPEN to reserve a buffer from the calling task's buffer
pool. If no buffer is available, M:READ exits with a
"blocking buffer unavailable" status.

Compressed records are decompressed by M:READ so that
only the expanded record, without compression codes, is
input into the user's buffer.

A byte count can be requested that is less than, equal to,
or greater than the file's logical record size. The number
of bytes requested, up to a maximum of the logical record
size, is always transferred. If the byte count does not equal
the logical record size, "incorrect length" status is returned.
In any case, the file ispositioned to the next logical record,
regardless of the byte count transferred. For compressed
files, the requested byte count is compared to the byte
count of the expanded record instead of the logical record
size. "End-of-file" status is returned when the file is
positioned at the logical EOF. "End-of-tape" status is
returned when the file is positioned at the logical EOT.
This is frue whether or not error recovery is specified.

A Read Backward order will be interpreted as a Read order.

SPECIAL EDITING FOR RANDOM-ACCESS RAD FILES

Read Automatic or Binary. Binary and EBCDIC modes are
again identical. The exact number of bytes requested will
be put into the user's buffer and "incorrect length" status
will not be returned. One or more granules will be read to

"The user should be thoroughly familiar with the BCD and
packed-binary mode if 7-track magnetic tape is used. See

the 7-Track Magnetic Tape System Reference Manual,
Publication 90 09 78).

36 Service Routines

satisfy the byte count. RAD space between granules is lost.
Unused parts of granules are ignored.

If the Read begins or extends beyond the file's ending
boundary, no data is transmitted and "end-of-tape" status
is returned. This is true whether error recovery is specified
or not. The granule displacement must always be specified;
if not, a "calling sequence error" is returned.

Note: For all RAD files, no transfer will be initiated that
crosses a track boundary. Instead, it will be broken
into two transfers: one to write to the end of the
track, and a second to complete the transfer. There-
fore, in a "no-wait" operation, a check must be
requested to complete the transfer. If an AIO Re-
ceiver is specified, it will be entered each time
channel end occurs, but it also must be specified in
each Check operation call.

M:WRITE (General Write Routine)

M:WRITE provides independent output with standard editing
and standard error detection and correction. The error
handling procedure is optional on each call to M:WRITE.
The calling sequence is

LDX ADRLST
RCPY1 P,L
B M:WRITE

ADRLST is a pointer to the argument list, which is a set of
two fo six words in the user's program or in a temporary
stack. The argument list consists of six words:

word 0
FIA[W|EIR 0 ORDER
01 2 3 45 7 8 15
where
F=1 if a device-file number is specified.
F=0 if an operational label or device unit is

specified.
A=1 if an AlO Receiver address is specified.
A=0 if no AIO Receiver address is specified.

Note: only a foreground operation can specify

this.
wW=1 if wait for completion is unconditional.
W=0 if wait is only for "initiate and return";

return is immediate if the operation cannot be
started immediately.

E=1 if standard error recovery is to be performed word 4
at channel end for this operation.

AIQ Receiver address or RAD granule displacement

0 15

E=0 if no error recovery is to be attempted.

R

I

1 ifa RAD granule displacement isspecified (can

e _ . t
only be specified for random-access RAD files). This is the address of the closed AIO Receiver subroutine

called by the 1/O interrupt task at the channel end, if
A =1 (word 0). If A =0, this is the RAD granule displace- I
ment (see word 5).

R=0 if a RAD granule displacement is not specified.

ORDER is one of the following pseudo order bytes:

Order Operation word 5
X'00' Return information about this device. RAD granule displacement (optional)
0 15
X'01' Write binary.
X'03' Write file mark or 1EOD. If an AIO address is specified (A =1, word 0), word 5
indicates the displacement of the granule from the start of
X'04' Check previous input for completion the file (starting with a displacement of zero) where the 1/O
(after a "no wait" initiation). transfer begins. If A =0, word 4 is the RAD granule dis-

placement. See Chapter 6 for further details.
X'05' Write EBCDIC.

The return is to the location in the L register. The B regis-
X'07' Check write (RAD only). ter is always saved.

word 1 The status is returned in the E, A, and X registers. Status
and method of returning status are the same as for M:READ.

Operational label or file number

0 15 M:WRITE FUNCTIONS
M:WRITE is designed to write one physical record on the
word 2 device specified, regardless of the device type. Because
of differences in Write orders for the card punch, it is
Address of buffer containing data necessary fo specify whether the output record is binary or
5 T EBCDIC. (For most other devices, the difference is not

meaningful.)

Not more than one physical record will be written for a
single Write order. For devices like the card punch, if
fewer than a standard number of bytes are specified (80 for
EBCDIC and 120 for binary), the remainder of the record
0 15 is padded with blanks (EBCDIC) or zeros (binary). Most of
the general comments which apply to M:READ also apply to
M:WRITE.

word 3

Number of bytes to transmit

The byte count must be an even number when writing on
RAD files and may not exceed 65,536. It may be either
even or odd for all other devices, but cannot exceed
8192 bytes. If an odd byte count is requested, the first
byte is written from the right half of the word and the left

Write End-of-File. Order code X'03' produces the fol-
lowing results:

half is ignored. If an even byte count is requested, the Device Result

byte is written from the left half of the first word. Line Printer No effect

Output to the card punch assumes an even byte count. An Keyboard/Printer No effect

extra byte at the start of the buffer issent if the count is odd. Card Punch IEOD card

- Paper Tape Punch 1EOD NL

teor magnetic tapes, RAD, or disk pack, five attempts Magnetic Tape EOF

for e sty il b mode I €1 spacfed. /0 440 uorticl 719 Logiolfile o
performed until a "Check/Write" is issued by the user. RAD (random file) Logical record mark I

Service Routines 37

For devices where the Write End-of-File order has no mean-
ing, a status of "operation not meaningful for this device"
will be returned. If a magnetic tape or sequential RAD file
is positioned at the end-of-tape, the end-of-file will be
output. (This is the only writing allowed past the end-of-
tape when error checking is specified.) The Write End-of-
File order for any RAD file causes an implicit call to
M:CLOSE and any data written in the blocking buffer will
be output on the RAD.

Write EBCDIC to Keyboard/Printer. The first byte is as-
sumed to be a carriage control byte and is never printed.

If the byte is a zero or a one, double spacing is used; other~
wise, single spacing is used. In any case, this first byte
is not sent to the keyboard/printer. Trailing blanks are
removed and a NEW LINE code is inserted as the last byte
(if NEW LINE is not already present). If there are more
than 85 printable characters, those beyond 85 are ignored,
and a status of "incorrect length" is returned.

Write Binary to Keyboard/Printer. The exact number of
bytes specified is written. No format byte is assumed, no
editing is performed, and no line format is imposed. It is
the user's responsibility to insert NEW LINE codes if more
than 85 bytes are output. A maximum of 256 bytes may be
output with one operation.

Write EBCDIC to Paper Tape. Trailing blanks are removed
and a NEW LINE code is inserted as the last byte (if not
already present). The entire record, specified by the byte
count, is edited and output and an "incorrect length" status
is never returned.

Write Binary or EBCDIC to Line Printer. The first byte per
record is always assumed to be a carriage control (format)
byte, and is never printed. With any odd byte count (as in
all of the 1/0), the first byte transmitted is from the right
half of the first word, and the left half of the first word is
ignored.

The print routine changes the logical format byte (as shown
below) to the proper physical format code for the printer.
If more than 133 bytes are specified, the remainder beyond
133 bytes is ignored and an "incorrect length" status re-
turned. If fewer than 133 bytes are specified, the right
(trailing) portion of the printed image will contain blanks.
However, the user's buffer is not modified. The print rou-
tine will first data chain on the order byte and format byte
in the Monitor area and then on the user's print image.

If it is desired to force single spacing, there may be a word
appended to the beginning of the user buffer with a blank
in the right half; the byte count is then increased to an odd
value, and up to 132 bytes from the original buffer will be
printed with the extra "blank" used as the format byte to
force single spacing. The format codes (in EBCDIC) are

Format Byte Effect

blank No space before printing, single
space after printing.

38 Service Routines

Format Byte Effect

1 Page eject before printing, single
space after printing.

0 Single space before printing, single
space after printing.

- No space before printing, no space
after printing.

Any other format code will be treated like a blank but will
not be printed. These are standard FORTRAN format char-
acters with the exception of the minus sign (-) which is sub-
stituted for the standard FORTRAN plus sign (+) to allow
overprinting. The user can use M:IOEX (General 1/O
Driver) to send the standard format code or any other format
code for XDS printers.

Write EBCDIC to Card Punch. Regardless of the byte count
requested, 80 bytes are always output. If fewer than 80
bytes are requested, the punch image is filled out with
blanks. The image is moved to a Monitor buffer; the user's
buffer is never modified. If more than 80 bytes are re-
quested, only the first 80 are output and the surplus is ig~
nored. In this case, "incorrect length" status is returned.
If the file has been declared BCD at system initialization,
all EBCDIC output records are converted to BCD before
being punched. (The operation is performed in the Moni-
tor's buffer.)

Write Binary to Card Punch. Regardless of the byte count
requested 120 bytes are always output. If less than

120 bytes are requested, the punch image is padded with
trailing zeros. (The image is moved to a Monitor buffer;
the user's buffer is never modified.) If more than 120 bytes
are requested, only the first 120 will be output and the
remainder ignored. In this case, an "incorrect length"
status is returned.

Write EBCDIC or Binary on Magnetic Tape. Variable-length
records are possible; no check is made of the data and no
editing is performed. The exact byte count specified (up
to the allowable maximum) is always written.” No "incor-
rect length" status is ever returned.

If the tape is positioned past the end-of-tape marker and
error checking is specified, the data is not transmitied and
"end-of-tape" status is returned. If error checking is not
specified, the data is transmitted and the "end-of-tape"
status is not returned.

If the tape is physically write-protected and an "initiate
no-wait" order is requested, the "write—protected” status

tFor 7-track magnetic tape, the data is recorded in either
BCD or packed-binary format, which may cause an "in-
correct length" status if the record is not read with the same
byte count used fo write the record (see the 7-Track Mag-
netic Tape Systems Reference Manual, Publication 90 09 78).

is returned, If an "initiate and wait" order is requested,
the Monitor puts out an alarm and waits for operator action
(see the pseudo order bytes under the definition for ORDER
under word 0 of the argument list).

Write EBCDIC or Binary on Sequential RAD Files. When
writing on blocked files, a blocking buffer must be supplied.
If the calling program has not specified a blocking buffer,
M:WRITE will call M:OPEN to reserve space in'the task's
buffer pool. If no buffer is available, M:WRITE exits with
a "blocking buffer unavailable" status.

Records to be written on compressed files are edited with
compression codes inserted in a Monitor buffer. The data
in the user's buffer remains unchanged.

For compressed files only, the logical record size has no
meaning and the requested number of bytes is compressed
and output. For all other files, a byte count less than,
equal to, or greater than the logical record size can be re-
quested and the requested number of bytes, up to the maxi-
mum of the logical record size, is always output. If the
byte count is greater than the logical record size, an "in-
correct length" status is returned. In any case, the file is
positioned to the next logical record regardless of the byte
count transferred.

An "end-of-tape" status is returned when the file is po-
sitioned ot the logical EOT (whether error checking is
specified or not or if the current operation will cross the
logical EOT). Data cannot be output past a logical EOT.

If a Write is attempted on a fife that is either logically
write-protected or on a RAD track that is physically write-
protected, a "write-protected" status is returned and no
data is output.

Since the RAD has no read-after-write capability as do mag-
netic tapes, a separate Check-Write operation is essential
to ensure absolute validity of the data output. However,
since a separate Check-Write operation requires as much
time as the original write operation, and the RAD has a high
degree of reliability, the capability should only be used when
the data is sensitive or cannot be regenerated. Backspacing
operations must be performed before the Check-Write oper-
ation, since no repositioning is performed at this time. For
compressed or blocked files, no Check-Write is allowed and
a status of "operation not meaningfu!" will be returned.

Write EBCDIC or Binary on Random-Access RAD Files. Al-
though a granule size may be specified when a random file
is defined, the size does not restrict the maximum number
of bytes that may be written. However, each Write opera-
tion begins at the start of a granule, and uncompleted gran-
ules are filled out with zeros. The exact number of bytes
requested is output; never with "incorrect length" status
return. If the Write begins or extends beyond the file's
ending boundary, no data is transmitted and an *end-of-
tape" status is returned, whether or not error recovery is
specified. The sector displacement must always be speci-
fied; if not, a "calling sequence error" status is returned.

If a Write is attempted on a file that is either logically
write-protected or on a RAD track that is physically write-
protected, a write-protected status is returned and no data
is output.

Note: For all RAD files, no transfers will be initiated that
will cross a track boundary. Instead, it will be
broken into two transfers: one to write to the end
of the track, and a second to complete the transfer.
Therefore, in a "no-wait" operation, a check must
be requested to complete the transfer. If an AIO
Receiver is specified, it will be entered each time
channel end occurs, but it also must be specified in
each check operation call.

M:CTRL (General Control Routine)

M:CTRL provides device-independent positioning capabili-

ties for magnetic tapes (both 7-track and 9-track) and for

sequential RAD files. All M:CTRL control functions are
exempt from channel time limits. The calling sequence is

LDX ADRLST
RCPY1 P,L
B M:CTRL
ADRLST is the pointer to the argument list, which is a set

of two consecutive words either in the user's program or in
a temporary stack. This argument list appears as follows.

word 0
F W ORDER
01 2 3 15
where
F=1 if this is a device-file number.
F=0 if this is an operational label or device unit
number.
W=1 if wait for operation is to be initiated.”
W=0 if no wait for operation is to be initiated
when device/channel is busy.'
ORDER is one of the following pseudo order bytes:

Order Operation

X'EB! Space Record Backward
X'EF! Space Record Forward
X'FB! Space File Backward

tThe W flag has a different function for M:CTRL than for
M:READ/M:WRITE. If the operation is initiated, control

will not be restored to the calling task until the operation
is complete.

Service Routines 39

Order Operation

X'FF! Space File Forward
X'2B! Rewind Off Line
X'3B! Rewind On Line

word 1

Operational label or file number

0 15

Return is to the location in the L register. The B register is
always saved. Status is returned in the E, A, and X regis-
ters, as in M:READ.

Note: For random-access RAD files, where these operations
are not meaningful, an "operation not-meaningful"
status will be returned.

M:CTRL FUNCTIONS

If the device is a magnetic tape or a sequential RAD file,
it is positioned as indicated. The record spacing commands
are utilized for physical records and are not meaningful for

FORTRAN logical records.

Space Record Backward. The Space Record Backward order
positions a magnetic tape to the start of the previous physi-
cal record. If the tape is already at load point, the order

is ignored and a BOT status is returned. If the previous rec-
ord was either an end-of-file or end-of-tape marker, EOF
or EOT status is returned.

For compressed RADfiles, this order is illegal and a status of
"operation not meaningful for this device" will be returned.

For sequential RAD files, the file is positioned to the start
of the previous logical record. If the file is positioned at
the logical BOT, the order is ignored and a BOT status is
returned. If the file is positioned immediately beyond the
logical EOF, EOF status is returned and the file is reposi-
tioned to the point immediately before the logical EOF, If
the file is blocked and there is output data in the blocking
buffer, it iswritten on the RAD before the file isrepositioned.

Space Record Forward. The Space Record Forward order
positions a magnetic tape to the start of the next physical
record. If the record skipped was either an end-of-file or
end-of-tape marker, EOF or EOT status is returned.

For compressed RAD files, this order is illegal and a
status of "operation not meaningful for this device" will be
returned.

For sequential RAD files, the file is positioned to the start
of the next logical record. If the record skipped was the
logical EOF, an "end-of-file" status is returned. If the
file is positioned at the logical EOT, the record is not
skipped and an "end-of-tape" status is returned.

40 Service Routines

Space File Backward. The Space File Backward order
positions a magnetic tape to either the start of the previous
file mark (and EOF status is returned) or load point (if there
is no file mark). If the tape is already at the load point,
the order is ignored and BOT status is returned.

For sequential RAD files, the file is positioned to either
the start of the logical EOF or to the logical BOT. If the
file is positioned immediately beyond or at the logical EOF, I
it is repositioned to the point immediately before the logical
end-of-file, and EOF status is returned. If the file is al-
ready positioned at the logical beginning-of-tape, the order
is ignored and BOT status is returned. If the file is blocked
and there is output data in the blocking buffer, it is written
on the RAD before the file is repositioned.

Space File Forward. The Space File Forward order positions
a magnefic fape fo either the start of the next file or the
end-of-tape mark, whichever is encountered first. Either a
status of EOF or EOT is returned.

For sequential RAD files, the file is positioned immediately
at the logical EOF and "EOF" status is returned. If the
file is already positioned beyond the logical EOF or no
logical EOF has been written, the order is ignored and an
"illegal RAD sequence"” status is returned. If the file is
blocked and data has been written in the blocking buffer,
it will be written out before the file is repositioned.

Rewind On-Line. The Rewind On-Line order rewinds mag-

netic tape to the load point. If the tape is already at the
load point, no error status is returned.

For sequential RAD files, the file is positioned to the logi-
cal BOT. If the file is already at the load point, no error

status is refurned. If the file is blocked and there is output
data in the blocking buffer, it is written on the RAD before
the order is executed.

Rewind Off-Line. For magnetic tape, the tape is rewound
and unloaded. The Rewind Off-Line operation is useful
for a "save" tape or for a tape at the end-of-reel when a
new fape must be mounted. The user must control and check
this condition.

For sequential RAD files, the file is closed by a call to
M:CLOSE. If the file is blocked and there is output data
in the blocking buffer, the data is written on the RAD be-
fore the order is executed. In addition, the file directory
is updated on the RAD to reflect the current position of the
logical file mark.

M:DATIME (Calendar Date and Time of Day)
M:DATIME provides the calendar date or time of day, or
both, to eitherforeground or background programs in EBCDIC
format. The calling sequence is

LDX ADRLST
RCPYI P,L
B M:DATIME

ADRLST is the pointer to the argument list, which is a set
of two consecutive words either in the user's program or in
a temporary stack. This argument list appears as follows:

word 0
D|IT]|S
01 23 15
where
D= if return calendar date is specified.
D=0 if calendar date is not required.

T=1 if return time of day is specified.
T=0 if time of day is not required.

S=1 if date and time are supplied by the user (in
Address and Address + 1).

S=0 if current date or time of day, or both, are
to be used.

word 1

Address
0 15

where Address is the location where the date and time of
day are stored.

Return is to the location in the L register. The B register is
always saved.

M:DATIME FUNCTIONS

K:CLOCK in the communication region is a pointer to the
accounting table that contains the date and time. The date
and fime are set at system initialization and can be reset by
the operator through unsolicited key-ins. The dafe is auto-
matically odvanced and provisions are included for year
changes including leap-year adjustment. Thus, under con-
tinuous operation, only adjustments fo accommodate day-
light savings time changes are required. The date or time
of day, or both, are stored in the following format in the
area of core specified by word 1 of the argument list:

Date: M M
D
D
Y Y
2 blanks are sup-
- - plied when both
Time: H R date and time are
M N requested

Note: Time of day is given in military time (0000-2359).

If the date and the time are supplied by the user (S=1),
the times supplied in Address and Address + 1 will be over-
laid by the calendar date or time, or both. This option is

used by the Job Control Processor | PURGE command.

M:TERM (Normal Exit from Background Programs)
M:TERM provides an entrance back to the Monitor on a
normal termination of a background program. The calling
sequence is

RCPYI P,L

B M:TERM

M:TERM FUNCTIONS

If called by a foreground program, control will be trans-
ferred to M:EXIT to perform the exit sequence for that task.
On calls from the background the L register must be set to

a background address or the background call will be aborted
with a protection violation.

All 1/O is allowed to run down. All files utilizing block-
ing buffers will have their blocking buffers closed out. If

an unconditional postmortem dump was specified, it will be
performed af this time. The Control Command Interpreter
will then be read into the background and will read the
next control command.

M:ABORT (Background Abort Routine)

When a background program fails for any reason, a call to
M:ABORT provides a method of clearing the background

program out of core memory and for terminating all active
1/O for the background program. The calling sequence is

LDA LOC

LDX CODE
RCPYI P,L

B M:ABORT

CODE is a word of EBCDIC information that is printed on
the DO and OC devices to show why the job was aborted.

Return is never to the location in the L register. If the call
is from a real-time foreground program, M:EXIT is called to
perform the exit functions. If the calling task occupies the
nonresident foreground area, it will be disabled and an un-
load operation will be performed. On calls from the back-
ground, the L register must be set to the background or the

background call will be aborted with a protection violation.
All 1/O in progress is allowed to complete and a postmortem
dump will be performed at this time if previously requested.

Service Routines 4

M:SAVE (Interrupt Save Routine)

M:SAVE routine performs the full context switching when

a foreground interrupt occurs. It is available only for fore-
ground programs that are connected directly to an interrupt.
The calling sequence is

RCPYI P,L
B M:SAVE
ADRL TCB

where TCB is the address of the Task Control Block for the
task.

Return is to the value in the L register + 1. The contents of
all registers except A and L are transferred to the TCB.

M:SAVE FUNCTIONS

The contents of A and L must be saved in the proper place
in the TCB before the task calls M:SAVE. M:SAVE then
saves the original value of X, T, B, and E in the TCB. The
interrupting task has its own floating accumulator set into
locations 0001-0005 and the previous task's floating ac-
cumulator pointers are saved. The M:SAVE routine stores
the temporary stack and TCB pointers in locations 0006 and
0007 for this current task and saves the old values in the
interrupting task's TCB,

If the flag in the TCB is set for "no temporary storage"
M:SAVE saves only the hardware registers and the TCB
pointers, and not the full context.

If Clock 1 has been reserved for RBM accounting, M:SAVE
will record the start time of the first interrupting foreground
task and will trigger the RBM Control Task to calculate fore-
ground run time.

An additional entry point, M:FSAVE, is available for users
of the Sigma 3 optional instruction, Store Multiple. This
entry point, with an address literal in cell X'C7', assumes
that all registers have been saved, butperforms the remainder
of the functions of M:SAVE as listed above. The calling
sequence is

RCPYI P,L
B *X'C7'
ADRL TCB

where TCB is the address of the Task Control Block for the
task.

M:EXIT (Interrupt Restore Routine)

M:EXIT restores the contents of all registers prior to exit
from a foreground task, switches the full context back to

42 Service Routines

the previous task, and performs the actual exit sequence.
The calling sequence is

RCPY1 P,L

B MEXIT
DATA -1
DATA RETURN

Return is to the interrupted task at the address saved in the
PSD. All registers are restored to the same value they had
ot the time of the interruption.

If the two optional data words (DATA - 1 and DATA RETURN)

are used, M:EXIT restores all registers and context, except
overflow and carry and the interrupt status; but instead of
performing the hardware exit, M:EXIT branches to RETURN.

M:EXIT FUNCTIONS

The operations performed by M:EXIT are essentially the re-
verse of those in M:SAVE. It is necessary to inhibit inter-
rupts for about 11 microseconds for the actual exit sequence,
but it is not necessary to call M:EXIT to perform the exit se-
quence if it can be performed by the user's program.

The TCB contains a flag to indicate whether any temporary
storage is used. If the task does not use any Monitor 1/O
routines or the floating accumulator, no temporary storage
is needed. In this case, only the hardware registers are
restored.

M:HEXIN (Hexadecimal to Integer Conversion)

The M:HEXIN routine converts a hexadecimal number (rep-
resented in EBCDIC) to a binary integer. The calling
sequence is

LDA left

RCPY AE

LDA right
RCPY1 P,L

B M:HEXIN

where left and right contain the EBCDIC codes for the hexa-
decimal number (the left and right part of a possible four-
byte field).

Return is to the location in the L register. The result is in
the A register, the X register is changed, and the B register
is unchanged.

M:HEXIN FUNCTION

Blanks and zeros are treated as hexadecimal zeros. No tem-
porary storage is used and no error checking is performed.

M:INHEX (Integer to Hexadecimal Conversion)

The M:INHEX routine converts a binary integer to a hexa-
decimal representation in EBCDIC code. The calling se-
quence is

LDA integer
RCPYI P,L
B M:INHEX

where integer is the value to be converted.

Return is to the location in the L register. On return, the
E register contains the leftmost two bytes, and the A regis-
ter contains the rightmost two bytes. The X register is
changed, but the B register is unchanged.

M:INHEX FUNCTION

Four fields of four-bit hexadecimal codes are converted to
four fields of eight-bit EBCDIC equivalents. No temporary
storage is used.

M:CKREST {Checkpoint/Restart Background)
M:CKREST checkpoints the background (i.e., writes it out
onto a predefined area on the RAD), turns the background
space over to the foreground program, and then restarts the
background when requested. The calling sequence is

LDX ADRLST
RCPYI P,L
B M:CKREST

ADRLST is a pointer to an argument list, as follows:

word 0

Ci{R|P

0O 1 23 15
where

C=1 if request is to "checkpoint" the background.

C=0 if request is to "restart" the background.

R=1 if a Checkpoint Complete Receiver is to be
informed when the checkpoint is complete. (Valid

only if C=1and P=0.)

R=0 if no Checkpoint Complete Receiver is used.

P=1 if checkpoint is to be performed at the level
of the calling task (meaningful only if C = 1).

P=0 if checkpoint is to be performed at the level
of the RBM Control Task (meaningful only if C=1).

word 1

Checkpoint Complete Receiver

0 15

The Checkpoint Complete Receiver should be used like an
AIO Receiver. That is, after requesting a checkpoint, the
foreground program should release control by a call to
M:EXIT and regain control through the specified receiver
address when the checkpoint operation is completed. Only
a foreground program can checkpoint the background; a
background program cannot checkpoint the background area.

Return is always to the location contained in the L register.
The B register is always saved. The A register contains the
status (1 if operation is impossible; 0 if successful).

M:CKREST FUNCTIONS

Checkpoint. All active I/O for the background is allowed
to complete but no error recovery is performed for this 1/0O
until the background is restarted, Peripheral devices dedi-
cated to the background should not be repositioned.

When all I/O has terminated, the entire background space
is written out onto a prespecified area of the RAD and the
background is set "protected". If the background is truly
"empty"fwhen the request is made, the checkpoint is per-
formed immediately, and no RAD is required for the check-
pointing procedure. If a Checkpoint Complete Receiver
was specified, it will be entered with the L register set
to the return address and will be run at the RBM Control
Task level.

A checkpoint operation will be automatically performed
while loading a nonresident foreground program that extends
into the background. When the active nonresident program
unloads (see Monitor service routine M:LOAD), the back-
ground will be automatically restarted. When the check-
point operation is completed, the message ! 1BKG CKPT is
output to inform the operator.

Restart. A restart is always performed at the priority level
of the RBM Control Task. It is assumed that no peripherals
have been repositioned. The core allocation table is re-
stored to the previous value before the checkpoint took
place, and the background is then loaded in from the RAD
and continues as before.

tThis would occur after a |FIN command was encountered
or when the Monitor was in an idle state ofter an abort of
an attended job.

Service Routines 43

If no background program was in progress when the check-
point was called for, the background is set to anunprotected
status but no attempt is made to reload a program from the
RAD when the foreground terminates.

The message ! 1 BKG RESTART is output to inform the opera-
tor that the background has been released by the foreground.
See Chapter 6 for more details.

M:LOAD (Absolute Core Image Loader)

M:LOAD initiates the loading of the root segment of a resi-
dent or nonresident foreground program by entering the re-
quested program name into the queue stack. It also initiates
the loading of the root segment of a resident or nonresident
foreground program or background processor upon request
from the Job Control Processor. It releases (unloads) the
nonresident foreground space for use by the next program
in the queve.

The calling sequence is

LDX ADRLST
RCPYI P,L
B M:LOAD

ADRLST is a pointer to an argument list, as follows:

word 0
Q|u 0
o 1 2 3 15
where
P=1 indicates a request to read from the specified
device-file number (word 1). The device-file
number must currently be assigned to a RAD file.
(This option is restricted for use by the Job Control
Processor.)
P=0 indicates a request to read the specified non-

resident foreground program from the user's processor
RAD area. The program name is given in C1-C8,

Q=1 indicates the request is to be queued if it
cannot be satisfied now.

Q=0 indicates the request is to be ignored if it
cannot be satisfied now.

Uu=1 indicates an unload operation, in which case
P and Q are not meaningful.
Uu=o0 indicates a load operation.

44 Service Routines

word 1
DFN or C1 and C2
0 15
word n
c7 (&}
0 7 8 15
where
DFN is the device-file number.
C1-C8 is the program name (must be 8 characters,

including trailing blanks).

Return is always to the location in the L register. The con~-
tents of the B register are always saved and the A register
contains status codes, as follows:

A Register Meaning
0 Operation is successful.
1 Request cannot be honored at this time

(this could occur if Q =0 and a non-
resident foreground area was already
committed; or if Q =1 and the queue
stack was full).

M:LOAD FUNCTION

After saving the nonresident program name or device-file
number request, M:LOAD triggers the RBM Control Subtask
S:LOAD and then exits to the location in the L register.

The actual loading of the program is accomplished at the pri-
ority level of the RBM Control Task. S:LOAD will ensure
that sufficient blocking buffers are available for those oper-
ational labels contained in the header record of the proces-
sor. If the request was for a nonresident foreground program
that extends into area reserved for the background, S:LOAD
automatically causes the background to be checkpointed.

It is essential that each nonresident program executed in the
nonresident foreground area terminate itself by a call to
M:LOAD to unload, disable itself, and then exit via the
normal interrupt exit routine (M:EXIT). This will release
the nonresident foreground area for subsequent loads.

For an unload request, M:LOAD triggers the RBM Conitrol

Task routine S:LOAD for the next load if any other entry is
in the queue stack. If no additional requests are present
and S:LOAD has checkpointed the background, S:LOAD

triggers RBM Conirol Task S:REST for a restart.

Note that M:LOAD inhibits interrupts for a short period
while manipulating the queue stack (less than 100 psec if no
more than eight entries are waiting in the queue).

M:0PEN (RAD File Open)

M:OPEN reserves a blocking buffer from a buffer pool or a
specified location, for a sequential blocked RAD file to
which an operational label or device unit number had pre-
viously been assigned.

The calling sequence is

LDX ADRLST
RCPYI P,L
B M:OPEN

ADRLST is a pointer to the three-word argument list shown
below.

word 0

F=1 if a device-file number (DFN) is specified
(internal Monitor calls only).

F=0 if an operational label or device unit num-
ber is specified.

B=1 if a blocking buffer location is included in
this call.
B=0 if no blocking buffer location is included,

in which case M:OPEN attempts to find space in
the task's buffer pool.

word 1

Operational label, device unit number, or DFN

0 15

word 2

Address of blocking buffer (optional)

0 15

Return is to the location in the L register. The B register
is restored. The following status information is contained
in the A register on return.

A Register Meaning
0 Operation successful.
1 Blocking buffer already defined.

A Register Meaning

2 No space available in buffer pool.

3 Ilegal operational label or operational
label unassigned.

4 Not RAD file, or not a blocked RAD file.

5 Blocking buffer outside of background
for a file assigned to the background.

6 Itlegal DFN.

M:OPEN FUNCTION

The address of the blocking buffer (either the one specified
or one located from the task's buffer pool established by an
ABS or $BLOCK command) is stored in the File Control

Table. If no open request has been performed for a sequen-
tial blocked file by the user's program, M:READ, M:WRITE,
or M:CTRL will call M:OPEN to allocate a buffer from the
blocking buffer pool on the first data transfer operation.

M:CLOSE (RAD File Release)

M:CLOSE releases a RAD file {including the blocking buf-
fer if any) or releases the blocking buffer for a blocked file,
but retains the file assignment. In either case, partially
filled blocking buffers are written onto the RAD. The call-
ing sequence is

LDX ADRLST
RCPYI P,L
B M:CLOSE

ADRLST is a pointer to the argument list, as follows:

word 0
FIR|B 0
0 1 2 3 15
where
F=1 if a device-file number is specified.
F=0 if an operational label or device unit number
is specified.
R=1 if the device-file number is to be released.
R=0 if the device-file number and operational

label remain assigned but the blocking buffer is
to be released (the file is not to be repositioned).

B=1 is a buffer is specified.

B=0 if no buffer is specified.

Service Routines 45

word 1

Operational label, device unit number, or DFN

0 15

word 2

Buffer location (optional)

0 15

Return is always to the location in the L register. The
B register is always restored to its former value. The A reg-
ister contains the following completion status.

A Register Meaning
0 Successful.
1 Illegal DFN.
2 The operational label is not assignéa
to a RAD file.

Illegal operational label.

1/0 error writing blocking buffer or
EOF onto RAD.

5 No buffer available to complete the
close operation.

M:CLOSE FUNCTIONS

If the file is blocked and data has been written on it, the
contents of the blocking buffer are written onto the RAD.

If the blocking buffer was allocated from the task's buffer
pool, the buffer is released. The EOF is written on the RAD.

IfR=1, F=0, and the operational label has a permenent
assignment, the label is set "unassigned". If the label has
no permanent assignment, the label is deleted from the table
of operational labels.

If an EOF has been written on the file (sequential file only
it must also be written onto the RAD. To accomplish the
writing, M:CLOSE requires a buffer, one sector in length,
into which the file dictionary is read. If no buffer is speci-
fied, M:CLOSE attempts to allocate a buffer from the task's
buffer pool (or will use the one already opened for this file
if it is blocked). If no buffer is available and an EOF is to
be written, the file is not closed and an error completion
code is returned.

M:DKEYS (Read Data Keys Routine)

M:DKEYS provides a means for background programs to read
the data keys on the processor Control Panel. The calling
sequence is

RCPYI P,L
B M:DKEYS

46 Service Routines

Return is fo the location in the L register. The contents of
the B register are always saved. The contents of the data
keys are in the A register on return.

MWAIT (Simulated Wait Instruction)

M:WAIT provides a means for background programs to exe~
cute a Wait instruction from nonprotected memory. The
calling sequence is

RCPYI P,L

B M:WAIT

The return is to the location in the L register. The B regis-
ter is always saved. The return does not take place until
the operator performs an unsolicited S key-in.

The Monitor types out the message
I 1BEGIN WAIT

and goes into a wait loop.

Only a background program may use M:WAIT; a call from
a foreground program results in a no-operation.

M:SEGLD (Load Overlay Segments)

M:SEGLD loads and/or executes an overlay segment, for
either the foreground or background, from a file previously
prepared and saved on the RAD by the Overlay Loader or

the Absolute Loader.

The calling sequence is

LDX ADRLST
RCPY] P,L
B M:SEGLD

ADRLST is a pointer to the argument list.

word 0
Wi LR 0 Segment ID
01 2 3 7 8 15
where
W=1 if an unconditional wait for completion is

specified.

W=0 if loading is to be initiated only; control
will be returned to the calling program.

L=1 control is to be transferred to the transfer
address of the segment just loaded (valid only
ifw=1),

L=0 control is to be returned to the calling
program.

R=1 there is a "loading complete" receiver
(meaningful only if W =0).

R=0 no "loading complete” receiver.

word 1

Operational label
0 15

The operational label is used to control the loading of the
segment. The file must previously have been defined as a
RAD file and set to the proper overlay program on the RAD.
Background programs should use operational fabel PI.

word 2

ADRL of OV:LOAD
0 15

The symbol OV:LOAD must be declared as an external
reference and is set by the Overlay Loader to the value of
the Overlay Loader Control Table address in core.

If the program is assembled in absolute form, the Absolute
Loader will create the OV:LOAD table at the end of the
root, Therefore the last item in the root would normally be
an OV:LOAD EQU 5.

word 3

Loading Complete Receiver

0 15

The Loading Complete Receiver is permissible only for fore-
ground programs and should be used in the same way as an
AIO Receiver. That is, after loading is initiated the fore-
ground program should release control by a call to M:EXIT
and regain control through the specified receiver address
when the overlay operation is completed.

On dll calls specifying an"initiate only", acheck operation
must be performed on the operational label designated to de-
termine the status of the load and to release the associated
device-file number for subsequent use.

On entry, return is to the location in the L register if the
L parameter in word 0 of the calling sequence is"0"; other-
wise, control is returned to the newly loaded segment. The

B register is always saved. On the return, the A register
contains status showing the completion code, as follows:

A Register Meaning
0 Operation complete and successful.
-1 Irrecoverable 1/0 error,
2 Invalid call.

M:SEGLD FUNCTIONS

A core table of 5n+1 words is maintained aof the end of the
user's root segment that defines the actual RAD addresses
for the overlay segments. (OV:LOAD points to this table;
n is the number of segments in the program.) The segments
may be loaded in any order because of the random-access
capability of the RAD, Using the Loading Complete Re-
ceiver and associated procedures can achieve greater effi-
ciency in foreground loading.

M:DEFINE (RAD File Definition)

M:DEFINE allocates a portion of the background temporary
file area on the RAD for temporary use by the designated
operational label or device unit number. This call is
applicable to foreground operations only if the file is
previously assigned to a permanent RAD file. The calling
sequence is

LDA PTR (FORTRAN programs only)
LDX ADRLST

RCPYI P,L

B M:DEFINE

PTR is the absolute address of the FORTRAN Associated
Variable. It is meaningful only if K =1.

ADRLST is a pointer to a four-word argument list.

word 0
F WP 0] KIG 0
0 2°'3 45 7 8 9 10 15
\ v -
File Format Byte
where
F specifies the file format as follows:
000 blocked

001 compressed
010 unblocked

110 random

Service Routines 47

WP =11 if RBM write protection is specified.

WP =10 if foreground write protection is specified.
WP =01 if background write protection is specified.
WP =00 if write protection is not desired.

K=1 if the A register contains the address of the
FORTRAN Associated Variable.

K=0 if FORTRAN Associated Variable is not
specified,

G=1 if a granule size for randomfiles isspecified;
otherwise, the granule size is determined by the
sector size of the reference device (meaningful
only if F=110).

word 1
Operational label or device unit number
0 15
where
operational labels are EBCDIC
device unit numbers are binary

word 2

Number of logical records in file

word 3

Logical record size, or granule size if G=1 (bytes)

0 15

The number of logical records in the file and the logical
record size are used to calculate the actual temp space
required. For compressed EBCDIC files, n card images can
normally be accommodated by n/3 80-byte records. Thus,
12,000 card images would require 4000 80-byte records
(about 83 tracks on a 360-byte per sector RAD). For
blocked, uncompressed files, the total area in sectors equals
the number of records requested, divided by the number of
logical records per sector. Thus, 120-byte binary card
images can be placed three per sector on a 360-byte-per-
sector RAD. A 300-card deck would therefore require
100 RAD sectors (seven tracks). If G =1 and F = 110, the
file size is computed using the granule size in word 3.

If this is a random file and G = 0, then the logical record
size is actually the FORTRAN random I/O logical record
size and the granule size is equal to either the physical

48 Service Routines

sector size for temporary files, or to the granule size defined
at file ADD time for permanent files.

For unblocked records, the total area in sectors equals the
number of records requested multiplied by the number of
sectors required for each record.

Return is to the location in the L register. The B register is
restored. The A register contains status information on the
return, as follows:

A Register Meaning

0 Operation successful.

1 Calling sequence error. Logical record
size is not an even number or O records
requested.

2 Operational label invalid (foreground)
or no spare entry in operational label
table.

3 No more device-file numbers for the
RAD.

4 RAD overflow (files too large).

5 If K =1, attempted to define pre-
viously defined file using inconsistent
parameters.

M:DEFINE FUNCTIONS

For the specified temporary file, the appropriate size is
allocated from the pool of temporary file space if such space
is available. An unused device-file number is then initial-
ized with the boundary points of this RAD file. All subse-
quent references to this file (until closed by a call to
M:TERM, M:ABORT, or M:CLOSE) will refer to the allo-
cated area. The file is set to the "rewound" condition, if
it is a sequential file.

If the operational label is already assigned, no error status
is refurned if it is assigned to a background RAD file. If
K =1, the address of the FORTRAN Associated Variable

from the call must be the same as the one for the file.

Note: M:DEFINE uses locations 1-3 (of the calling pro-
gram's floating accumulator) for temporary storage.

M:ASSIGN (Assign RAD Files)

M:ASSIGN performs equivalence between an operational
label or FORTRAN device unit number, and

1. A RAD area.

2. A file name within a RAD area.
3. A device-file number.
4

Another operational label or device unit number.

The calling sequence is

LDX ADRLST
RCPYI P,L
B M:ASSIGN

ADRLST is a pointer to an argument list of two to eight
words, as follows:

word 0
TY | F|A 0 D
0 1 2 3 4 12 13 15
where
TY =00 if the label is to be assigned to another
label.
TY =01 if the label is to be assigned to a device-
file number.
TY =10 if the label is to be assigned to a RAD
area.
TY =11 if the label is to be assigned to a file
within a RAD area.
F=0 if the label is a background operational label.

F=1 if the label is a foreground operational label.
A=1 if the two~letter area mnemonic is contained
in word 3; otherwise, D will specify the area. If
A is set, D will be ignored. A must always be set
for areas other than SP, SD, SL, UP, UD, UL, BT,
and CP.
D = directory to be used:
000 Checkpoint area (area only)
001 System Processor area
010 System Library area
011 System Data area
100 Background Temp area (area only)
101 User Processor area

110 User Library area

111 User Data area

No named files may exist in either the Checkpoint or Back-
ground Temp areas. D is ignored for TY =00 or 01.

word 1

oplb (1)
0 15

where oplb (1) is the operational label or device unit to be
assigned.

word 2

opbl (2), DFN, or buffer address

where

oplb (2) if present, indicates that oplb (1) will be
assigned to the device-file number that oplb (2) is
currently assigned to.

DFN if present, is the device-file number that
oplb (1) will be assigned to.

buffer address is the first word address of a buffer
(equal to one blocking buffer in length) that will
be used by M:ASSIGN as temporary storage for the
appropriate RAD area dictionary. This is mean-
ingful only for TY =11,

word 3

Clor Al C2 or A2
0 7 8 15

If A (of first word of argument list) = 1, word 3 contains
the two-letter area mnemonic, Al and A2; otherwise,
word 3 contains the first two characters of the file name,
as continued below:

word 3+ A
Cl C2
0 7 8 15
word 6+ A '
Cc7 C8
0 7 8 15

C1-C8, if present, is the name of the file to which oplb (1)
is to be assigned. That is, this file on the RAD is to be
linked to an unassigned RAD device-file number to which
oplb (1) is, in turn, assigned. This is meaningful only for

TY =11.

Service Routines 49

Return is to the location in the L register. The B register is
restored. The A register contains status information on the
return as follows:

A register Meaning

0 Successful operation.

1 Mixed oplbs or device-file numbers
(foreground to background or vice
versa).

2 Invalid oplb (2) or DFN.

3 No spare entries in oplb or DFN tables.

4 File name not found in designated.
directory,

5 RAD area not allocated.

6 lilegitimate RAD file format.

When the A register = 0, the X register will contain the
standard record size of this device.

M:ASSIGN FUNCTIONS

M:ASSIGN may be called to make any of four types of
assignments, according to the setting of TY, as follows:

TY =00 oplb (1) is assigned to the DFN to which
oplb (2) is currently assigned. Oplb (2) must be
the same mode (foreground or background) as
oplb (1) (error return A =1). A background pro-
gram cannot assign foreground oplbs {(error return

A=1),

TY =01 oplb (1) is assigned to the specified DFN.
DFN must be legal, must not be a RAD DFN, and
may not be foreground if oplb (1) is background.

TY =10 o0r 11 oplb (1) is assigned to a currently
unused RAD DFN, which in turn is linked via the
RAD dictionaries to a file on the RAD. This RAD
file may be either an entire RAD area (e.g., sys-
tem processor) for TY = 10, or an individual file
within an area (e.g., XSYMBOL) for TY = 11.
The RAD area must have beenallocated at SYSGEN
(error return A = 5). The buffer address (TY = 11
only) must be in the background if the calling pro-
grom is a background program.

If there are no errors, the assign will take place regardless
of the prior status of oplb (1). For TY = 10 and 11, sequen-

tial RAD files are rewound (file pointer is set to BOT). For
TY =00 and 01, the file position is unchanged.

M:RES (Temporary Storage Allocation Without Transfer)

M:RES allocates storage in a temporary stack, saves the
previous value of B, and sets B to the first word address of

50 Service Routines

temporary area being allocated. The calling sequence for
dynamic allocation of storage is

RCPYI P,T

B *$+3
DATA n
DATA 0
ADRL M:RES

where n is the number of cells to be reserved.

T must point to the background if it is a background
program.

A TS abort will occur if more temporary storage is requested
than is available.

The calling sequence for nondynamic allocation of storage
is

RCPY1 P,T

B *$+3
DATA n
ADRL TEMP
ADRL M:RES

where TEMP is the address of n reserved locations at the end
of the calling program. This area must not contain any code
or literals.

Upon return, the B register contains the pointer to the new
temporary storage stack. Locations 0 and 1 relative to the
base register are used by the storage allocation routines and
may not be used by other routines. Location 2 relative to

the base (the return address for M:POP) is set to M:ABORT.

The calling program can set up its own exit through M:POP
via the following.

LDA =RETURN
STA 2,1

The L and X registers are unaffected.

M:POP (Temporary Storage Release Routine)

A call to M:POP is made to release the current TEMP stor-
age stack (pointed to by the current value in the B register),
restore the previous value to B, and return to the location

specified in TEMP+2,

If the temporary storage was allocated by M:RES, the call
must set up a return in TEMP+2, The calling sequence is

LDA —RETURN
STA 2,,1
B M:POP

where RETURN is the location to which return will be made
after the stack is released.

Return is to the address specified in location 2, relative to
the beginning of the stack being released. The location in
the L register and the return address must be in the back-
ground area if return is to a background program. On re-
turn, B contains its previous value before the RES-POP
sequence. - Assume return is made to location R; L is set to
the value R+1.

M:OPFILE (Convert Operational Label to Device-File

Number)

M:OPFILE determines the file to which a foreground or
background operational label is assigned. The calling
sequence is

LDA TYPE

LDX ADRLST

RCPY1 P,L

B M:OPFILE
where

TYPE is the mode of the operational label; nega-
tive for foreground, positive for background.

ADRLST is a pointer to the operational label.

Return is to the location in the L register. The B register
is saved and restored. The status is contained in the E reg-
ister as follows:

E = negative if label is not found

E = positive if label is found

If E is positive, the following information is provided.

Register Contents
X Device-file number
E 1OCT entry address’
A Operational label table enl'ryt

Note: This routine isused primarily by the RBM and certain
processors. It will seldom be needed by user programs.

"See the chapter on SYSGEN for a discussion of the 1/O
Control Table and the Operational Label Table.

M:RSVP (Reserve or Release Peripherals)

M:RSVP reserves a peripheral device for foreground use
only, until the foreground voluntarily releases the device.

LDX ADRLST
RCPYI P,L
B M:RSVP

ADRLST is the pointer to the argument list, which consists
of three consecutive words either in the user's program or
in a temporary stack. This argument list appears as follows:

word 0
UIRIT Device number
0 1 2 3 4 8 15
where
F=1 if request is "reserve for foreground".
F=0 if request is "release to background".
u=1 if request is for an unconditional reserve,
where operator intervention is not required,
u=0 if request is for a conditional reserve, where
operator intervention is required.
R=1 if o receiver is to be entered when the con-
ditional reserve is completed (only meaningful if
U =0).
R=0 if no such receiver is to be used.
T=0 if a device type is not specified.
T=1 if a device type is specified (used to distin-

guish KP40 from PT40).

word 1

Reserve Complete Receiver (optional)

0 15

A Reserve Complete Receiver should be used like an AIO
Receiver; namely, after the request has been acknowledged,
the foreground program should release control by a call to
M:EXIT and should regain control when the reserve has
been effected through the specified receiver address. This
receiver is entered at the priority level of the RBM Control
Task and should return to the location contained in the
L register. If R =0, word 1 contains the device type (see
word 2).

word 2

Device type (e. g., KP) (optional)

Service Routines 51

Return is always to the location contained in the L register.
The A register contains status as follows:

A=0 if the request is acknowledged. If F =1
and U =1 (i.e., unconditional reserve), the de-
vice is reserved for foreground use. If F=0(.e.,
release), the device has been released for back-
ground use.

A=1 if the request is acknowledged but operator
intervention is required. If a Reserve Complete
Receiver is specified, it is entered when the oper-
ator effects the reserve. This is the normal re-
sponse to a conditional request to reserve a
peripheral device (F =1, U=0).

A=2 if the device is not associated with a back-
ground file.

A=-1 if the request cannot be honored because a
prior request to reserve this device has been made,
if the request is to release an unreserved device,
or if the reserve peripheral table (RSVYTBL) is full,
(See "Limitations" below.)

M:RSVP FUNCTIONS

Reserve. If the request is for an unconditional reserve, a
message is output to inform the operator of the foreground
reserve action (e.g., !!FG RESERVE, LP02).

If the request is for a conditional reserve, a message is out-
put to inform the operator of the request (e.g., !!FG
REQUEST, CR03). The operator should then prepare that
device for the pending foreground operation, and then re-
serve the device by an unsolicited key-in of FR (foreground
reserve; for example, FR CRO3). This will reserve the de-
vice for foreground use. A message is now output to acknow-
ledge the reserve action (e.g., !!FG RESERVE, CR03)., If
the Reserve Complete Receiver is specified, it will be
entered at this point.

Release. The peripheral device can be released for back-
ground use by a call to M:RSVP to release the device. The
peripheral device specified will now be available for back-
ground use. A message will be output to inform the operator
of the release action (e.g., !!BK RELEASE,CRO3). The
peripheral device can also be released by an unsolicited
key-in of BR (background release). Unsolicited key-ins to
reserve and release peripheral devices are described in

Chapter 3.

Limitations. The reserve peripheral table will accommo-
date five requests at a time, which is felt to be a realistic
limitation.

M:Dow (Diagnostic Output Writer)
Currently, multitask use of the same file may result in a

conflict situation whereby a task is unable to output a

52 Service Routines

message because a lower priority task has control of the file.
M:DOW allows the use of an active file for the purpose of
outputting alarms. The calling sequence is

LDX ADRLST
RCPYI P,L
B M:DOW

ADRLST is o pointer to the four-word argument list as
shown below:

word 0
01 15
where
F=1 if a device file number is specified.
F=0 if an operational label or device unit number
is specified.
word 1
Operational label or file number
0 15
word 2
Address of buffer containing data
0 15
word 3
Number of bytes to transmit
0 15

Return is to the location in the L register. The B reg-
ister is always saved. The status is returned in the E,
A, ond X registers. The method of returning and the
status returned are the same as described under M:READ/
M:WRITE.

M:DOW FUNCTIONS

If the file to be used is currently active, M:DOW will
wait until end-action-pending and will then clear the

active file and the end-action-pending flags. The call
will be translated to an equivalent call to M:WRITE which
will output the alarm. The buffer data are assumed to

be EBCDIC.

M:COC (Character-Oriented Communications)

M:COC performs input, output, and control operations on
a specific communication line. The calling sequence is

LDX ADRLST Pointer to the argument list

RCPYI P,L Set the return address

B M:COC Branch to the routine

ADRLST is a pointer to the argument list, as follows:

word 0 Order
word 1} E Line number Prompt character
word 2 Buffer address
word 3 Byte count
word 4 End-of-message receiver

0 1 78 1112 15
where

Order (bits 12-15) is as follows:

Order Operation

0 Check status of line
1 Write n' bytes, no editing
2 Read n' bytes, ro editing
3 Send break character (long-space)
4 Check previous read or write
5 Write message of up to nf bytes, edited
6 Read message of up to nf bytes, edited
7 Disconnect line (turn off data set)
8 Connect line
E is 1 if an end-of-message (EOM) receiver is

specified; is O if no EOM receiver is specified.

Prompt character is meaningful for orders 6 and 8.
For order 6, it is the character (EBCDIC) to be
output before input is requested. This can be used
to signal the operator that input can now begin.
For order 8, it specifies the mode in which dll

f0 < n <255.

communication will be handled on this line until
it is disconnected, and it has the following form:

Bit Value Meaning
8 [Echo all input characters.
0 Do not echo.

9 1 Translate all input from 7-bit
ANSCII to EBCDIC, and all
output from EBCDIC to ANSCII,

0 Do not translate any codes.
10 1 Check parity on input and create
parity on output (even parity).
0 Ignore parity
11-12 00 Device is Model 33/35 teletype.
01 Device is Model 37 teletype.
10 Device is keyboard/display.
11 Device is foreign device, and no

editing or translation will be
performed (overrides setting of
bits 2 and 10).

EOM receiver is used like an AIO receiver. When
an input or output message is completed, the ap-
propriate communications task will branch to the
specified EOM receiver address, at the priority
level of either the input or output external inter-
rupt, and will show the line number (of the line
with the completed message) in the X register.
The user program should save this status, trigger
an appropriate user interrupt level, and return to
the location in the L register. All operations are
no-waitoperations; that is, the return is immediate
upon initiating I/O or performing the connect or
status checks. Thus, the EOM receiver is applica-
ble only for read (2 and 6), write (1 and 5), and
send break (3) orders. EOM receivers are subject
to the same restrictions and precautions as are AIO
receivers. (See Chapter 5 for a more detailed
discussion of AIO receivers.)

Return is to the location specified in the L register. On re-
turn, the B register remains unchanged; and the E, A, and
X registers are set as specified in Tables 11, 12, 13, and 14.

The nine possible orders that can appear in the argument
list, and the operation for each, are described below:

0 Check status of line. This operation allows the
user to check both the logical condition of the line
(which must be one of the unique codes inTable 14)
and the physical condition of the line (which is
reported just as it is received from the hardware).
Only the line number is needed in the argument list.

Service Routines 53

Table 11.

Status Returns for M:COC

Operation Major Status Action E A X
All operations Line no. not valid Return -1 8 Line no.
immediately
Calling seq. err. -1 4 Line no.
Line has disconnected -1 2 Line no.
Invalid line status -1] Line no.
Initiate read Line is busy Return 0 -1 Line no.
or write immediately
Successfully initiated Initiate and 0 0 Line no.
return
Check previous Line is busy Return 0 -1 Line no.
input or output immediately
Operation complete Return 0 Completion Byte count
code
Connect or Successful connection Connect and 0 0 Line no.
disconnect return
Check status Connected line Test and Line Line mode Line no.
return status
Table 12. Completion Codes Write n bytes, no editing. If the byte count is
- - odd, the first output transmission takes place
A Register Value | Meaning from right of the first word, and the left of the
0 Successful completion first word is ignored. No end-of-message codes
1 Porit byt J are added at the end of the message, and no
arily error on some byre rea trailing blanks or null characters are stripped
2 Break condition exists off. Parity generation and translation from EBCDIC
to ANSCII are under the control of the specified
Table 13. Line Status options for this line.
E Register Bits Meaning
0-11 Not used Read n bytes, no editing. A read operation is
12-13 Receiver status (O and C bits) initiated, wnf!‘n no edlhng'for cancel or character-
delete operations, but with a search for any
14-15 Transmitter status (O and C bits) ANSCII control character. Input is terminated
if any control character is found or if the speci-
fied byte count is exhausted. If any input bytes
Table 14, Line Mode were received before this read request was given,
these bytes are thrown away. The end-of-message
A Register Value | Meaning character always remains in the user's input buf-
fer, translated to EBCDIC, if specified. The
0 Line is disconnected same comments about parity apply for the write
1 Ovutput mode operations.
2 Output prompt character and then
switch to input Send break character (long-space). If the line is
3 Input mode in an inactive mode, the long-space is sent imme-
Inactive mode diately. If the line is in a write mode or a read
mode, the operation is terminated and the long~
Message complete space is then sent. In the argument list, only the
line number is meaningful.

Service Routines

4 Check previous read or write. This operafion is
required for all read and write operations, whether
or not an EOM receiver is specified. The user
buffer remains busy until the previous operation is
checked. The lineisthen set inactive and becomes
ready for subsequent use. This is the only way to
determine break conditions. The return status is
shown in Tables11 and 12, Only the line number
is meaningful in the argument list.

5 Write message of up to n bytes, edited. This op-
erates like the write operation without editing
except (1) that trailing blanks and trailing null
characters are removed and (2) that appropriate
control characters are added as the final charac-
ters of the message.

6 Read message of up to n bytes, edited. This oper-
ates like the read without editing, except that
ignore, backspace, and cancel operations are in
effect for the current line; when any of these
special characters are encountered, the proper
effect takes place on the line and the user's buffer
is modified accordingly. (Note that the backspace
is an editing, or destructive, backspace; thatis, the
previous character is deleted from the user's buf-
fer.) The prompt character, if nonzero, is output
prior fo the read operation. (See Table 15 for a
summary of editing operations.)

7 Disconnect line. The data set is disconnected, but
the send and receive modules remain connected.
The logical line mode is cleared (i. e., disconnected).

8 Connect line. The logical line mode is set to
“inactive" and the options are initialized. The
connect line is assumed to be a dedicated line or
a line that has already dialed-in. A user program
can poll the lines with a "check status" order to
determine when a line has connected.

M:COC FUNCTION

Once the RCOC initialization routine has prepared the
communication equipment, the status of each line is "dis-
connected". All input and output are rejected until the
line is connected, If the line is dedicated, only a "con-
nect line" call to M:COC is required. If the line must be
dialed-in (using M:IOEX), the dial operation must precede
the "connect line" call to M:COC, The connect sets the
line status to "inactive" (i.e., available for 1/O transfers).
1/O operations are initialized sequentially, and when com-
pleted, the line status is set fo "message complete". At
this point the line is still busy and can be cleared (i.e.,
set to "inactive") only by a call to M:COC to check the
status of the previous operation (order 4). The call "check
operation" is not required after a check status, a connect
or a disconnect operation. A disconnect operation sefs the
line status to "disconnected", and the line must be recon-
nected before it can be used again (see Appendix F).

Table 15. Summary of Editing Operations
Codes Used
Operation
33/35 37 Character Display
User-generated end-of-message CR or LF or BREAK NL or BREAK NL or INTERRUPT

character on input, edited

System-generated end-of-
message character on input

LF or CR (opposite of
user input);
CR and LF on BREAK

Attention code; used to BREAK

terminate input or output

Ignore this character, except RUBOUT or

after ESC ESC,SPACE

System-generated characters CR,LF,RUBOUT

on output at end-of-message

Delete previous character ESC,RUBOUT
(echo+—)

Delete current line ESC, X

None for NL;
NL for BREAK

None for NL; NL for INTERRUPT

BREAK INTERRUPT

DEL or DEL or

ESC,SPACE ESC,SPACE
NL,RUBOUT NL,5 - NULL
ESC,DELETE ESC,DELETE or EM
(echo\) operation

ESC,X ESC,X or CR,CAN

Service Routines 55

9. 1/0 OPERATIONS

BYTE-ORIENTED SYSTEM

The Monitor performs all I/O services for the byte-
oriented 1/O system. This includes:

e Logical-to-physical device equivalencing.

e Initiating 1/O requests.

e Standard error checking and recovery (optional).
e Software checking of background and Monitor.

e Software checking of background requests to preserve
protection of foreground and Monitor.

e Optionally generating device order bytes for device-
independent operations.

e Accepting user-generated IOCDs and device order
bytes to provide complete control for a user's
program,

e Using data chaining for foreground programs performing
scatter-read or gather~write operations,

e Reading or punching cards in either BCD or
EBCDIC,

e Positioning magnetic tapes and sequential RAD files.
e Editing from paper tape or keyboard/printer.
e All /O interrupt handling.

e Managing both temporary and permanent RAD
files.

e Limiting channel active time for I/O transfers.

1/0 INITIATION

Whenever a task needs to initiate an 1/O operation, it
calls on the appropriate Monitor 1/O routine (see Chap-
ter 4 for complete calling sequences). These Monitor
/O routines are reentrant, so that a higher priority
task may interrupt and request 1/O during the initiation
of a lower-priority task, in which case the low=priority
task is suspended and the higher-priority task satisfied
first,

A real-time foreground program may acquire control of
a multidevice controller from background users at the
completion of any current 1/O. This technique is used
in,place of queuing. All Monitor I/O initiation is made
at the priority of the calling task, with background tasks
having the lowest priority.

56 1/O Operations

The channel time limits imposed by the Monitor on standard
devices are as follows:

Maximum Allowable Channel

Device Type Active Time (seconds)

KP 255
LP
CR
o

oM 10
PT 820
BR : 3
BP 3
M7 10
RD 7202, 7204 3
RD 7242 4
PL Not imposed

END ACTION

The chapter on Operator Communication specifies the pos-
sible error messages. Generally, standard error recovery
takes place when the 1/O is checked for completion rather
than on the 1/O interrupt, This means that error recovery
for the background will be processed at the priority level

of the background rather than at the 1/O interrupt priority
level. However, there is a provision for the real-time fore-
ground user to specify an end-action routine to be called
when the Monitor answers the 1/O interrupt. This is the
AIO Receiver address in the 1/O calling sequence, and it
is to be used only when more sophisticated end-action is
required or when a foreground task is tobe restored to active
status at channel end. Theroutine is processed at the priority
level of the 1/O interrupt, so the processing should be of
very short duration. Reentrancy in this routine is the user's
responsibility. For example, this routine might consist of
storing the 1/O status information and then triggering a
lower-level external interrupt through a Write Direct, where
this lower-level task performs the actual processing. The
end-action routine should then return to the task from which
it originally came (by RCPY L, P).

The form of the call to the AIO Receiver is

LDA AIODSB (device status byte

from AIO inbits 0-7;
* device number in

bits 8-15)

RCPYI P, L

B AIO Receiver address

The AIO Receiver routine should return to the location
contained in the L register on the entry. All registers are
assumed fo be volatile, which means that they need not be
saved and restored to their former contents,

The purpose of the AIO Receiver technique is to allow a
reaf~time user program to be informed by RBM when chan-
nel end occurs on a particular 1/O operation, * It is used
instead of I/O queueing by the Monitor. Typically a fore-
ground program wishing to maximize I/O and computation
overlap will issue an 1/O request with the no-wait option
and with an AIO Receiver address specified. When the
/0 is successfully initiated, the foreground task exits from
the active state by a call to M:EXIT) and is restored to
active status at channel end by a Write Direct to trigger
the interrupt level from the A1O Receiver. The foreground
program must then return fo the Monitor I/O routine with
the "check" option to complete the end action on the
file. See Chapter 6 for a more detailed discussion of
AIO Receivers,

Note: For transfers invoking blocked files where no
I/O is actually performed, the X register will
contain -1 to indicate that the AIO receiver
will not be entered.

LOGICAL/PHYSICAL DEVICE EQUIVALENCE

When writing a foreground or background program in
either Symbol or FORTRAN, the user is not required to
know the actual physical device number that will be
used in the input/output operation. Two ways are pro-
vided under RBM to help the user select the input/output
device on a logical rather than physical basis.

The first method is the direct logical reference. The user
can specify a device=file number in his calling parameters
to the input/output routines, and RBM will translate this
into an actual physical device number. There may be
several device-file numbers pointing to the same physical
device; however, only one device-file number is generally
needed per device per active task in the system. Each
device-file number can be used by only one task at a time.
This is a necessary restriction since the 1/O status is saved
in the device-file number table in the RBMand independent
operation by several tasks on the same device would cause
invalid status from the separate tasks using it.

The second method is device referencing through indirect
logical reference. This method first assigns a device unit
number or an operational label to a device-file number,
which in furn is assigned to a physical device number, The
equivalence of operational labels or device unit numbers
and the device-file numbers is set at System Generation
time for certain standard devices, as shown in Tables 2
and 16. The standard assignments may be changed later by
use of IASSIGN or IDEFINE control commands.

Table 16. Standard Device Unit Numbers

Device Unit

Number Standard Assignment
101 Keyboard/printer input
102 Keyboard/printer output
103 Paper tape reader
104 Paper tape punch
105 Card reader
106 Card punch
108 Lfne printer

Table 2 shows the standard background operational labels,
The devices and functions shown indicate how the standard
processors use these labels, Since each 1/O call must specify
a byte count, a user program can read any number of bytes
from SI (if SI is magnetic tape, for example). The labels
are merely a name. There is no restriction on the record
size except as imposed by the peripheral devices.

RAD FILES

The two types of RAD files available are sequential files
and random files. A sequential file may be used like a
single-file magnetic tape, whereas a random file may be
used like a truly direct-access device. The capabilities
and restrictions of each type of file are described below.

SEQUENTIALFILES

1. Sequential RAD files are availdable to foreground and
background tasks.

2. Sequential RAD files are available to routines M:READ,
M:WRITE, and M:CTRL, but not to M:IOEX,

3. Sequential RAD files can be blocked (with more than
one logical record per sector) if the logical recordsize
is less than or equal to half the RAD sector size. The
Monitor 1/O routines do the blocking and
unblocking.

4. Sequential RAD files can be compressed (with blanks
removed) if they are EBCDIC data. The Monitor I/O
routines do the compressing and expanding but do not
check for binary data. Compressed records are always
blocked and of variable size; therefore the logical
record size has no meaning except when allocating

the file.

Logical/Physical Device Equivalence/RAD Files 57

10.

12,

58

Logical records may be less than, equal to, or greater
than the RAD sector size. Unblocked records always
start on a sector boundary. Therefore, if a logical
record is less than a RAD sector and is unblocked, the
remaining bytes of the sector will be ignored. Ifa
logical record is greater than a sector, it will occupy
an integral number of physical sectors and the remain-
ing bytes of the last sector will be ignored.

BOT (beginning-of-tape) is defined as the logical load-
point and equals the first sector of the file, EOT is de-
fined as the logical end-of-tape and equals the last
sector +1 of the file. EOF (end-of-file) is defined as
the logical file mark (which may or may not exist).

As on magnetic tape, once a logical record or file mark
is written on a file, any records or filemarks previously
written beyond that point are unpredictable,

Sequential RAD files (except compressed files) can be
spaced forward or backward by logical records,

Sequential RAD files can be positioned by IREWIND,
IFBACK, and !FSKIP commands.

Sequential RAD files can request an AIO Receiver at
channel end for physical 1/O transfers. When oper-
ations involve only logical 1/O transfers, the AIO
Receiver will be ignored. A flag will be set indicating
whether the AIO Receiver is to be acknowledged or
not, (see M:READ/M:WRITE status returns).

RAD transfers must consist of an even number of
bytes.

Operational labels can be equated to permanent files
on the RAD, or be allocated from available temporary
RAD space. This can be accomplished either through
control cards (for standard assignments) or through
Monitor service calls at execution time for nonstandard
assignments,

When the operational label is defined or assigned
to a permanent file, it is automatically positioned

at the BOT,

. As on magnetic tape, the only record that can be

written at the EOT is the logical file mark,

RANDOM FILES

Random files are available to foreground and back-
ground jobs.

RAD Files

Random files are available to routines M:READ and
M:WRITE, but not to M:CTRL or M:IOEX.

All 1/O transfers start on a granule boundary within
a file. These granule boundaries are addressed as a
number that represents the displacement of the
granule from the start of the file, beginning with
zero. A granule boundary always begins on a
sector boundary but need not end on one (see dis-
cussion of granules below).

All positioning commands such as IREWIND, [FSKIP,
IWRITE EOF, etfc., are meaningless.

The transfer of any number of bytes (up to a maximum
of 65, 536) may be requested, provided that the byte
count is an even number and the transfer will not ex=
tend past the file boundary.

Operational labels can be equated to permanent files
on the RAD or can be allocated from available tem-
porary RAD space. This can be accomplished either
through control commands (for standard assignments) or
through Monitor service calls at execution time for
nonstandard assignments,

When a random file is defined, the user may specify
a FORTRAN logical record size and a pointer to the
word where the last referenced FORTRAN logical
record +1 is stored, This information, although un-
used by the Monitor, is stored in the file and may be
requested by executing programs or processors (such as
the FORTRAN compiler), if necessary.

Random files cannot be blocked or compressed, unless
the user program performs its own blocking/deblocking
or compression/decompression.

BOT is defined as the first sector of the file. EQT is
defined as the last sector +1 of the file. EOF has no
meaning in random files except for mapping purposes.

Requests for a foreground AIO Receiver at channel end
will always be acknowledged.

GRANULES

Granules are the minimum physical amount of data that are
transferred in a read or write operation from or to random

RAD/disk pack files, While a granule is usually synonymous
with a sector on a device, it may be defined (on a file
basis) to be equivalent to any of the following:

e a partial sector
° one sector
e several sectors

A granule always begins on a sector boundary but need
not end on such a boundary, For example, to make the
7204 RAD and the 7242 disk pack transfers equivalent, a
granule can be defined to be 1024 bytes; this is then one
sector on the disk pack and two sectors plus a fraction of

a sector on the 7204 RAD.

RAD FILE MANAGEMENT

RBM permits allocation of the RAD into the subsections
shown in Figure 4. The exact bounds on these sections are
computed from the size of required contents or selected by
the user in accordance with the anticipated use of the
system. In either case, the bounds are set during System
Generation, and cannot be changed except by a new
System Generation. RBM maintains directories for as many
areas as the user specifies up to 15, plus: the System Li-
brary, System Processor area, and System Data area, RBM
also maintains control of the checkpoint area. The back-
ground temporary space is allocated from control command
inputs or from calls to M:DEFINE as requested.

Areas need not be allocated contiguously (RAD tracks may
be skipped between areas), and can be distributed over
more than one RAD, However, each area must exist en-
tirely on a single RAD. If there is more than one RAD on
the system, one will be designated as the RBM System RAD,
which will receive any default areas. Any RAD with sec-
tor 0 available will receive a bootstrap in that area.

RBM Bootstrap Loader

System Processor area

System Library area

System Data area

RBMGO RBMAL
RBMOV RBMS2
RBMPMD RBMSYM
RBMID

User Processor area

User Library area

User Data area

Checkpoint area

Background temporary storage

Xn area

Dn area

Figure 4. RAD Allocation

RAD File Management

59

6. REAL-TIME PROGRAMMING

FOREGROUND PROGRAMS

Under the Sigma 2/3 RBM, a foreground program is one that
operates in protected memory, utilizes foreground opera-
tional labels or device unit numbers, and has access to
privileged Sigma 2/3 instructions. It is protected from any
background interference through an integrated hardware/
software protection scheme. A foreground program may be
classified as either a resident foreground program, a semi-
resident foreground program, or a nonresident foreground
program, and it it important that this distinction be
understood,

RESIDENT FOREGROUND PROGRAM

Foreground programs are defined as resident through the
RAD Editor when their files are created on the user pro-
cessor area of the RAD, They are loaded into core from
the RAD whenever the RBM system is booted, and are either
automatically armed, enabled and (optionally) triggered,
or they initialize themselves through their own initializa-
tion routines. Once loaded into core for execution, resi~
dent foreground programs remain resident until the RBM
system is again booted from the RAD,

SEMIRESIDENT FOREGROUND PROGRAM

Semiresident foreground programs are normally not in core
memory. They are not read into core when the RBM system
is booted but must be called in explicitly when needed.
Semiresident foreground programs, when loaded, reside in
the resident foreground area. The user must schedule the
loading of semiresident foreground programs because the
Monitor provides no protection against overlay or over—
loading. When loaded, they may be automatically armed,
enabled and (optionally) triggered, or they may initialize
themselves through their own initialization routines.

NONRESIDENT FOREGROUND PROGRAMS

Nonresident foreground programs are normally not in core
memory. They are not read into core when the RBM system
is booted but must be called in explicitly when needed.
Nonresident foreground programs, when loaded, reside in
the nonresident foreground area, and the area is then consid-
ered "active” and is not available for subsequent use by other
programs (including the Monitor) until the program occupying
this area releases it by "unloading™. This feature is useful
when a system has several nonresident foreground programs
that have a resource allocation problem or are connected to
the same interrupt level. The Monitor will control access
to the nonresident foreground area, thus providing protec-
tion against multiple loading of these conflicting programs.

If nonresident programs are to be used, at least six cells

must be allocated for the nonresident foreground area of
core. If allocated, the nonresident foreground area is

60 Real-Time Programming

adjacent to the background. If a nonresident foreground
program is fo be loaded and the length of the longest path
(including COMMON) exceeds the size of the nonresident
foreground area, the background is automatically check-
pointed to allow the program to extend to the background.
The background remains checkpointed until the nonresident
foreground program unloads by a call to M:LOAD. When
loaded, nonresident foreground programs may be automati=-
cally armed, enabled and (optionally) triggered; or they
may initialize themselves through their own initialization
routines.

MONITOR TASKS

The relative priorities of the separate Monitor tasks are
given in descending order below:

Highest Counters (optional)

Power On Task

Power Off Task

Memory Parity Error Task

Protection Violation Task

Multiply Exception Task (optional)
Divide Exception Task (optional)
Input/OQutput Task

Control Panel Task

Counters = 0 (optional)

Real-Time Task(s), if any lower than I/O
RBM Control Task (lowest hardware level)

Background (lower than all hardware levels)

Although the tasks are not reentrant, they are serially
reusable; that is, as soon as a task finishes processing one
request, it can immediately process another. For example,
1/O interrupts are processed one at a time, with the highest
priority device always processed first if several interrupts
are waiting, but as soon as the processing of one interrupt
request has been completed, another request for a separate
device can be processed.

POWER ON TASK
The Power On Task performs the following operations:
e Waits for acceptable RAD status.

e Loads and links and branches to power-on overlay.

The

Disarms all external and internal interrupt levels,
then arms and enables all interrupt levels.

Interrogates foreground mailbox X'C4' for a power-on
receiver, and if one is specified, links and branches
to it. An override task is one that services an inter-
rupt generated at the override group level (dedicated
interrupt locations X'100' to X'105'). The receiver for
such a task may be specified by loading a resident task
into foreground. This task must have a small initiali-
zation routine that sets the corresponding foreground
mailbox to point to the real-time portion of the re-
ceiver. The various receiver mailbox addresses and
their corresponding functions are as follows:

Address Receiver Function
X'C3' Power Off

X'c4' Power On

X'C5! Integral IOP Timeout
X'Cé! Watchdog Timeout

Scans the Channel Status Table and, for any active
/O channel, sets Unusual End and Memory Parity Error
flags and simulates an /O inferrupt.

Retriggers any task that has its TCB address in the
TCB chain.

Restores protection registers.
Triggers RBM to write the message ! 'lPOWER ON.
Reloads the overlay region.

Switches the dedicated interrupt location for any
task that requires retriggering, so that the interrupt
branches to a separate Power On Task, This separate
Power On Task then branches to the point at which the
task (at this interrupt level) was interrupted and subse-
quently switches the dedicated interrupt location back
to its proper value,

Exits the power failure task (i.e., the Power Off
Task).

POWER OFF TASK
Power Off Task performs the following operations:
Saves the internal interrupt status,
Saves context via a call to M:SAVE,
Scans the Channel Status Table and issues an HIO to
any channel flagged active and saves the device status

byte and the even and odd channel register contents in
the File Control Table.

e Saves the RAD address of the RAD that has the system
processor (SP) area.

e Interrogates foreground mailbox X'C3' for a power-off
receiver. If one is specified, a branch is made to it;
otherwise, the Power Off Task waits for the power-on
interrupt,

MACHINE FAULT TASK

This task is responsible for examining memory parity errors
and watchdog timeouts. If a memory parity error occurs
while the background is active, the background program is
aborted and the real-time foreground is not disturbed. The
Machine Fault Task calls the reentrant Monitor routine
M:ABORT which sets the flag for the S:ABORT subtask and
triggers the RBM Control Task. S:ABORT then aborts the
background and prints an error message.

If a memory parity error occurs while a foreground task is
active and if the number of foreground parity errors has not
exceeded the specified limit, the Machine Fault Task sets
a flag to cause the RBM Control Task to output the fol-
lowing diagnostic:

1IFG PARITY ERR, TCB=FFFF, LOC=FFFF, A=FFFF,
X=FFFF, B=FFFF

Processing continues from the point where the parity er-
ror occurred,

If a memory parity error occurs while a foreground task is
active and if the number of foreground parity errors has
exceeded the specified limit, the Machine Fault Task does
the following:

1. Disables the active task.

2. Sets a flag to cause the RBM Control Task to output
a diagnostic.

3. Resets the foreground parity error counters,

4, Exits and simultaneously forces the active task to
teminate.

The RBM Control Task outputs the following diagnostic:

1IFG PARITY ERX, TCB=FFFF, LOC=FFFF, A=FFFF,
X=FFFF, B=FFFF

where ERX indicates that the task has been disabled and
terminated.

All tasks that do not use M:SAVE must set K:TCB correctly
to guarantee proper recovery from a memory parity error,

If an integral IOP watchdog timeout occurs, the Machine
Fault Task interrogates foreground mailbox X'C5' for an
integral IOP timeout receiver. If a receiver is specified,
the Machine Fault Task links and branches to it; other-
wise, the Machine Fault Task enters the "wait" state. The

Monitor Tasks 61

overflow bit will be set, and the control panel interrupt
will be ineffective in clearing this "wait". When this hap~

pens, a Customer Engineer should be notified immediately.

If an external IOP watchdog timeout occurs (usually as the
result of attempting direct 1/O to an unrecognized device),
the Machine Fault Task interrogates foreground mailbox
X'Cé' for a receiver. If a receiver is specified, the
Machine Fault Task branches to it; otherwise the Machine
Fault Task outputs the message

HIMACH, FAULT; TCB=FFFF, LOC=FFFF, A=FFFF,
X=FFFF, B=FFFF

It then changes the program status to set the overflow and
carry when it exits, and attempts to continue with the
foreground task. If this interrupt occurs twice for the same
task, the Machine Fault Task triggers RBM to write the
following message:

IIMACH. FAULX; TCB=FFFF, LOC=FFFF, A=FFFF,
X=FFFF, B=FFFF

It then disables and terminates the current foreground tasks.

PROTECTION VIOLATION TASK

Any attempt by the background to modify the contents of
protected memory, or to execute a privileged instruction,
will cause the Protection Violation Task to abort the back-
ground program, using the same method as the Memory
Parity Task.

Unavailable core is set "protected". Write attempts to
unavailable core cause protection errors, and read attempts
from unavailable core cause parity errors. The abort code
after a protection error shows the location causing the error
if the error was an invalid store or a privileged instruction,
An attempt by the background to branch to protected mem-
ory will cause an abort with the address of the location that
was being branched to. Note that Monitor service routine
calls actually cause a protection violation from the back-
ground, However, if the branch address and the return to
the background are valid, the branch is pemitted.

The set multiple precision mode instruction, RD X'81", does
not cause a protection violation when multiple precision
hardware is implemented.

MULTIPLY/DIVIDE EXCEPTION TASKS

These tasks simulate and subsequently execute a Multiply or
Divide instruction for Sigma 2/3 computers not equipped with
Multiply/Divide hardware. They are not reentrant, so all
lower interrupts are locked out for the duration of the simu-
lation (approximately 250 to 300 CPU microseconds.)

62 Scheduling Resident Foreground Tasks

INPUT/OUTPUT TASK

After an input/output interrupt, the Input/Output Task
identifies the highest priority device with a pending
interrupt. It then clears the channel activity status and
sets the operational status byte count residue in the proper
device-file status table, if the device is no longer opera-
ting. (The channel is not cleared for a zero-byte-count
interrupt.) If a foreground AIO Receiver was specified (for
a description of an AIO Receiver, see "I/O Operations" in
Chapter 5), conirol is transferred to this receiver at the
1/O priority level. It is expected that the AIO Receiver
exit properly.

To minimize interrupt inhibit time, the channel registers
are loaded and the /O initiating SIO is issued at the I/O
interrupt priority level. Consequently, any task with a
priority level higher than /O must not use M:READ,
M:WRITE, or M:IOEX to perform /O, but may perform
its own I/O without interrupts.

When Clock 1 is employed (@ SYSGEN option), M:READ/
M:WRITE operations are subject to a time limit. Clock 1 is
used to ensure that no channel is active beyond a preset
limit, If the limit is exceeded, an HIO is issued to the
offending device and appropriate end action will be taken.

Certain RAD 1/O operations are subject to a minimum-seek
algorithm. Under this algorithm, RAD seeks are not initi-
ated until the RAD is positioned within two sectors of the
first sector to be read. This prevents low=priority tasks from
denying RAD access to high=priority tasks. The algorithm
applies to all "wait" requests (see description of M:READ
and M:WRITE in Chapter 4).

CONTROL PANEL TASK

A Control Panel Interrupt causes the Control Panel Task to
set a flag for the RBM Control Task, trigger the task, and
then exit from the Control Panel Task (about 40 to 50 micro-
seconds of CPU time). The operator response is processed

at the level of the RBM Control Task.,

RBM CONTROL TASK

This task controls unsolicited key-ins and background oper-
ations, It is the only RBM task that actually performs input/
output and, therefore, is the only task that requires tempor-
ary stack space for the reentrant RBM input/output routines.

SCHEDULING RESIDENT FOREGROUND TASKS

When several different programs and tasks are simulta~
nously located in core memory, scheduling is required for

the orderly transfer of control from one task to another. Sched-
uling takes place in accordance with the following rules:

1. When no background or foreground task is active in
the system, the Monitor enters the "idle" state until
the operator directs the loading of a set of control
commands from an input device.

2. After a background program is loaded, the Monitor
transfers control to the program by an exit sequence
from the RBM Control Task. During execution of the
background program (if the program is waiting for its
own I/O to complete), there can be nothing else in
execution in the system, That is, the Monitor makes
no attempt to multiprogram to absorb idle time. If
there is an armed and enabled resident foreground task
in core, the foreground program may receive an inter-
rupt from some external source.

3. After entry, the interrupting task saves the contents of
any registers it will alter and proceeds to carry out its
function. The task may use either the M:SAVE service
routine to perform the saving operations or it may save
the contents of the registers itself,

4. When the real-time task is completed, it may restore
the context of the interrupted task and exit via the
standard Sigma 2/3 exit procedure or may have these
functions performed by the M:EXIT service routine.

Note that this is a last-in, first-out form of scheduling.
The interrupting task may itself be interrupted at any time
during execution by a higher priority task, up to the maxi-
mum possible number of tasks in the system.

Each time, a new task saves the status and register contents
of the interrupted task. When the new task exits, control
is returned automafically to the task it interrupted. If there
is another interrupt waiting befween the level of the current
task (which is just completing) and the interrupted task, the
originally interrupted task is immediately interrupted again
and the new (intermediate) task follows the same procedure,
Thus, it is never necessary for any task to know what task
precedes or follows it. The task merely preserves and re-
stores the environment according to the established rules.

The design of the hardware priority system makes itunneces-
sary for the Monitor to beinvolved in the actual scheduling,
and this procedure allows the task and programs o indepen-
dently control the execution priority of certain operations
within the foreground. For example, a real-time fore-
ground task that is activated by an external interrupt may
perform some processing and then issue a special Write
Direct to trigger another related task to continue the pro-
cessing at a higher or lower interrupt level. If the Write
Direct is to a higher level, the interrupt to the higher level
takes place immediately and the new task is begun, More
frequently, the Write Direct is to a task at a lower priority
level, and in this case the current task exits in a normal
manner and the highest priority "waiting" task will become

active, This task may or may not be the one that just re-
ceived the Write Direct. Eventually, the task that re-
ceived the Write Direct will be reached, and this task will
then continue the processing at that level. Thus, real-time
foreground programs can have an intricate scheduling scheme
with no RBM intervention,

An example of interrupt-driven scheduling is illustrated in
Figure 5.

LOADING FOREGROUND PROGRAMS

Foreground programs may be loaded into core for execution
in any of several ways. All programs must reside on the RAD
to be read into core memory for execution. They must be
written onto the RAD by the Overlay Loader or the Absolute
Loader.! In each of the methods described below, only the
root is loaded into memory as a result of the action taken.
Segments must be read in by subsequent calls to M:SEGLD.,

The most common method of loading a foreground program is
through a call to M:LOAD by another foreground program.
The call takes place at the priority level of the foreground
program and the request is placed into the queue stack, The
program is actually loaded by the Monitorsubroutine S:LOAD
at the level of the RBM Control Task, and this method is the
most logical one to be used. It is based upon conditions
automatically detected by other foreground programs and
requires no response or assistance from the operator.,

Another method of loading a foreground program is through
an unsolicited key-in by the operator. The operator must
generate a Control Panel Interrupt and, in response to the
request 1IKEYIN, type in "Q name", where "name" must
be the name of a foreground program residing in the user
processor area of the RAD, This action results in a call to
M:LOAD to queue the request. This method could be used
in response to conditions detected outside the computer sys=-
tem (e.g., a certain time of day). Both the above methods
apply to semiresident as well as nonresident foreground pro-
grams. For resident foreground programs, they would be
used only to obtain a fresh copy of a particular program
without rebooting the entire system.

Loading through use of the queue stack requires use of the
nonresident foreground area whether or not the request is to
be loaded into this area. Therefore, whenever a nonresident
foreground program is loaded, all queuve stack loading is
suspended until the program occupying the nonresident fore-
ground area releases the area by unloading.

fSee the 1ABS control command description in Chapter 2
for restrictions regarding the use of the Absolute Loader.

Loading Foreground Programs 63

High /O AIO revr(2)

1/O INTERRUPT

Request CHECKPOINT Request RESTART
—
FGND 1 1 F===3 1 . Vo1
| | — —
Initiate 1/O (AIO revr)
L] 1
FGND 2 2 ¢+ e e eeees : 2
eeed [——
5 =)
I e L T R 3
FGND 3 . 'BKG RESTART"

CKPT CKPT revr(l)

RBM CONTROL TASK ________ e

'BKG CKPT'

Y 4
BACKGROUND BKGNDF—— & ——————— BKGND

N O A A

0 T1 T2 T3 T4 5 T6 17 18 T9 T10 TN

Priority Level

TIME SEQUENCE
Note: Times need not be equally spaced.

Time Point Activity (Meaning)

T0 The background is executing.

T An interrupt is received for Foreground Task 2 which becomes active and saves the environment of the
interrupted background task into its TCB,

T2 Foreground Task 2 requests an 1/O operation, specifies an AIO Receiver, and exits. The background
resumes processing.

T2.5 An interrupt is received for Foreground Task 3 which interrupts the BG.

T3 An interrupt is received for Foreground Task 1 which becomes active and saves the environment of the

interrupted task (Task 3) into its TCB,

T4 At channel end, an 1/O interrupt is received for the operation initiated by Foreground Task 2; the
1/O Interrupt Task saves the environment of the interrupted task (Task 1). The AIO Receiver is
entered at the 1/O interrupt level and triggers Task 2, indicated by dotted line at FGND 2 level.

&4

Figure 5. Foreground Priority Levels

Loading Foreground Programs

Time Point Activity (Meaning)

resumes processing.

15 The AIO Receiver returns via a RCPY L,P instruction. The 1/O Interrupt Task exits, restoring the
interrupted task's status, Foreground Task 1 resumes operation, requests a checkpoint of the back-
ground, and specifies a Checkpoint Complete Receiver, This action causes the RBM Control Task
to be triggered, indicated by broken line at RBM Control Task level.

T6 Foreground Task 1 exits, restoring the interrupted task's status, This was actually Task 3, but Task 2
is waiting and it immediately becomes active.

17 Foreground Task 2 exits, restoring the interrupted task's status, This was Task 3. It becomes active
and continues from where it was suspended.

T8 Foreground Task 3 exits, restoring the interrupted task's status. This was actually the background
task. Since the RBM Control Task was triggered at T5, it is the highest waiting interrupt level. The
RBM Control Task becomes active and stores the interrupted task's status into its TCB. The RBM
Control Task calls the RBM Subtask S:CKPT which writes the background into the RBM Checkpoint
area on the RAD, S:CKPT then extends memory protection to the background and enters the specified
Checkpoint Complete Receiver at the RBM Control Task Level. In this illustration the Checkpoint
Complete Receiver triggers Foreground Task 1 with a Write Direct instruction,

T9 Foreground Task 1 becomes active and saves the environment of the interrupted task in its TCB. The
background area is now available to Foreground Task 1 for instructions and/or data. When processing
is complete, Foreground Task 1 requests a restart.

T10 Foreground Task 1 exits, restoring the interrupted task's status (in the Checkpoint Receiver, which
returns via a RCPY L, P instruction), The RBM subtask S:CKPT now completes its operation and
returns to the RBM Control Task which calls in the subtask S:REST to restart the background task.
S:REST first clears the background area, then reads the checkpointed background task in from the
RAD. The background is then set "unprotected" which completes the restart operation,

™ The RBM Control Task exits, restoring the status of the interrupted background task which then

Figure 5. Foreground Priority Levels (cont.)

Two other methods of loading foreground programs are avail-
able. They involve control commands normally used by the
background, are part of a background job stack, and must
be preceded by an FG key-in. These commands are

IXEQ initiates loading from whatever RAD file to
which background operational label OVisassigned.
The method presumes that either the appropri-
ate OV oplb assignment has been made, or
that the program to be loaded is on the RAD
file RBMOV to which the label OV is assigned
by default.

Iname causes the foreground program "name" to be
loaded in the same way a background processor
is loaded. The foreground program must reside on
either the System Processor or User Processor areas
of the RAD. The user is responsible for avoiding
the duplication of program names.

The control command methods are closely tied to back-
ground schedules and do not provide adequate response to
real-time needs. However, they can be used when de-
bugging foreground programs.

LOADING RESIDENT FOREGROUND PROGRAMS

Loading of real-time programs into their predefined RAD
files can be accomplished by the Absolute Loader from the
background job stack, or resident foreground programs can
be written info their predefined RAD files by the Overlay
Loader. It is not necessary to create the foreground pro-
grams when the system is created. However, to get the
foreground program in absolute form will require either the
use of the Overlay Loader or that the job be assembled in
absolute as a self-contained package.

LOADING NONRESIDENT FOREGROUND PROGRAMS

Nonresident foreground programs are loaded by the Monitor
service routine M:LOAD. Once loaded, these programs
can be connected to an interrupt via an initialization rou-
tine or else can be triggered by a code given in the pro-
gram's TCB. These programs then behave exactly like
resident foreground programs. If the program just loaded
resides in the area of core referred to as the nonresident
foreground area, the nonresident foreground area is tied up
until the program releases this space. Ordinarily, a program

Loading Foreground Programs 65

releases space by a call to M:LOAD to "unload", How-
ever, a FORTRAN program has no means of performing this
unload except by calling a special library routine. A
method is provided to automatically unload this area when
M:ABORT or M:TERM is called by the task occupying
the nonresident foreground area. Therefore, a FORTRAN
program calls the library routine L:OP (generated by the
compiler when the program calls STOP) to terminate and
unload.

FOREGROUND INITIALIZATION

When a foreground program is loaded, it may either be
initialized! by RBM or may have its own initialization rou-
tine (coded in assembly language). If the header of the
foreground program contains a transfer address, RBM honors
this address as the entry point to an initialization routine.
This routine may arm and enable (or whatever) one or a
number of related real-time interrupts. It can also set RAD
files for subsequent use and set up initial values in core
data tables. The initialization routine runs at the priority
level of the RBM Control Task with the privileges of afore-
ground program. The initialization routine should make no
calls on routines requiring temporary storage, since the
RBM temp stack is the one in use. When foreground

rSee Overlay Loader options in Chapter 7.,

initialization is completed, theroutine returnsto RBM viaa
register copy of Lto P. Foregroundinitialization routineswill
alsobe executed any time the system isrebooted from the RAD.

TASK CONTROL BLOCK FUNCTIONS

The Task Control Block (TCB) is a convenient means for
organizing and storing information necessary to attain pro-
per context switching, define dynamic blocking buffer
poois, define temporary space necessary for reentrancy,
and arm and enable the associated task, A foreground
program may have one or more TCBs within the program
(one for each task), but it is assumed that the first
loadable item within a foreground program is a TCB. The
TCB is used by the Monitor service routines M:SAVE,
M:EXIT, M:LOAD, and by the Control Command Inter-
preter upon encountering a IC: command.

The TCB consists of 17 words and can be created at assembly
time with Extended Symbol, or at load time by the Overlay
Loader. (A FORTRAN program must have its TCB created
by the Overlay Loader). The TCB is usually a block of
code contiguous to the task it describes, with address literals
pointing to the temporary stack space. A DATA statement
can set the initial code for the interrupt level state for the
task interrupt level. The complete contents of the TCB

are shown in Table 17,

Table 17. Task Control Block (TCB)

Location | Contents

Set by

TCB+0 ADRL PSD Assembler/Loader
0 - 3l4|5]6]7 15
1 | R-bit No. . .
For WD T10 | X| Dedicated Interrupt Location Assembler/Loader
0 3415 7|8 11[12 15
2 o001 0| Code | 0000 Int. Groop No, | Assembler/Loader

3 | ADRL TEMPBASE (temporary stack) (FWA)

Assembler/Loader

4 | ADRL TEMPLIM (temporary stack) (LWA+1)

Assembler/Loader

5 | Contents of L register from interrupted task

Current task (on actual entry)

6 | Contents of T register from interrupted task M:SAVE (or current task)
7 | Contents of X register from interrupted task M:SAVE (or current task)
8 | Contents of B register from interrupted task M:SAVE (or current task)
9 | Contents of E register from interrupted task M:SAVE (or current task)

10 | Contents of A register from interrupted task

Current task (on actual entry)

11 | Contents of location 0006 (K:BASE) from interrupted task | M:SAVE

66 Foreground Initialization/Task Control Block Functions

Table 17. Task Control Block (TCB) (cont.)

Location [Contents Set by
12 | Contents of location 0007 (K:TCB) from interrupted M:SAVE
task.
13 |Dynamic base (K:DYN) for temp of current task; Assembler/Loader (changed by M:RES and M:POP)

initially TEMPBASE +6

14 |Buffer pool LWA +1, Assembler/Loader

15 |Number of buffers(1 =n =16) (0 if unused). | Assembler/Loader

16 | "Use" bits for buffers in pool (0 if unused), M:OPEN or M:CLOSE
PSD+ 0 | Interrupt task status flags Interruptsequence

1 |Interrupted task P register Interrupt sequence

2 | First instruction of current task Assembler/Loader

Remainder of program (The PSD must be contiguous
with the program but need not be continguous with

the TCB.)

where

ADRL PSD is the Program Status Doubleword. It is the location shown in the dedicated interrupt location when
the interrupt takes place.

R-bit No. for WD is the hexadecimal value (from O to F) that indicates the register bit that identifies the
particular interrupt level within the Interrupt Group (the hardware block of 16 possible interrupts).

T is the flag that indicates whether the M:SAVE and M:EXIT routines should set location 0001 to 0007;
0 means yes, 1 means no. (T must be O if any Monitor service routines are used.)

X indicates whether or not the task is to be triggered at load time: 1 means yes, 0 means no. A code of 7
is issued subsequent to issuing the code (nomally 2, "Arm and Enable") given in word 2.

CODE is the inferrupt system control code (as defined in the Sigma 2 and Sigma 3 Computer Reference Man-
uvals), that indicates current or desired initial interrupt control status,

Buffer pool is an amount of space from one to 16 buffer areas in length, each of which is equal in size to the
value contained in K:BLOCK,

"Use" bits are bits, from left to right, beginning with zero, showing which of the maximum number of buffers
have been allocated by M:OPEN and have not yet been closed by M:CLOSE.

Task Control Block Functions 67

Note: The code in TCB+2 is the exact code used in the
Write Direct that sets the interrupt level. This code
is described in the Sigma 2 and Sigma 3 Computer
Reference Manuals under "Interrupt System Control, "

Bit T in word TCB + 1 indicates whether the task is using
the Monitor I/O routines and the floating accumulator; if
bit T is zero, a temporary stack is required and the M:SAVE
routine willinitialize locations 0001 through 0006, after
saving the previous pointers for the interrupted task., If
bit Tis a 1 (meaning no floating accumulator and no
temporary space are required), the M:SAVE routine will
not set these locations. In a real-time environment it is
recommended that a user does not set the T bit to 1 (the
floating accumulator and temporary storage pointers are
saved). The Monitor service routines M:SAVE and M:EXIT
do not, themselves, use any temporary storage,

When the task is programmed in FORTRAN, the task en-
trance and exit, TCB, and task entrance procedure are set
up by the Overlay Loader. The module load routine
M:LOAD sets the pointer to the PSD into the dedicated
interrupt location and arms, enables, and optionally triggers
the associated interrupt level.

The background program will have a Task Control Block in
protected foreground space,

Caution: Locations 1 through 5 in the zero table are not
saved and are recreated from location 6. Thus,
locations 1 through 5 must not be changed by a
foreground program or they will not be the same
after an interrupt has taken place.

When the Overlay Loader creates the TCB for a foreground
task, the items shown in Figure 6 are generated adjacent

to the task. The transfer address given in the object deck
is not treated as the entry point to an initialization routine,
but is used as the entry address for that task, The task will
be armed, enabled, and possibly triggered when loaded for
execution depending on the contents of words 1 and 2 of
the TCB, supplied to the Overlay Loader on the !$TCB card.

After a foreground program is loaded into core, certain
items in the TCB are examined. A fatal load error results
if the number of specified operational labels requiring
blocking buffers exceeds the number of available blocking
buffers (word 15 of TCB). If the number of available block=-
ing buffers is sufficient, word 15 of the TCB is adjusted to
reflect the current blocking buffer requirements.

In the event of a fatal load error in response to a load re-
quest from a background job stack via an I XEQ or ! name
command, the following message is printed on the DO:

PIABORT CODE XE, LOCATION FFFF

If the request came from a queue stack load, the following
message is logged on the DOz

NONRES FGND PGM xxxxxxxx LOAD ERROR

68 Foreground Priority Levels and 1/O Priority

If a program has an initialization routine, that routine is
responsible for storing word 0 of the TCB (the address to
receive the interrupted task's PSD) into the dedicated in-
terrupt location, as well as arming and enabling the appro-
priate interrupt level for each task within the program.

The initialization routine may also be used to assign any
specific operational labels required by the program (e.g.,
the operational label or device unit number required to
read in subsequent segments,

If the program has no initialization routine, word 0 of the
first loaded task (actually word O of that task's TCB) will

be stored into the dedicated interrupt location for that task
when the program is loaded. Next, the associated inter-
rupt level is disarmed to remove any waiting interrupts;
then it is armed, enabled, and possibly triggered, depending
on the contents of words 1 and 2 of the TCB.

When a foreground task is activated, control is transferred
to the address given in the dedicated interrupt location,
where the interrupted task's PSD is stored, and execution
resumes at PSD+2 at the level of that foreground program.
This is a hardware function that preserves the interrupt
status and execution location of the interrupted task. Next
the register contents of the interrupted task must be saved.

Normally, the first instruction in a foreground program will
store the contents of the accumulator into word 10 and the
contents of the L register into word 5 of its TCB and then go
to the Monitor service routine M:SAVE which will store the
remaining register's contents into the active task's TCB,
M:SAVE will also store the contents of K:TCB (used exten~
sively by the Monitor to identify the currently active task)
into word 12 of the TCB, and set K:TCB to point to the
active task's TCB. If the active task requires temporary
storage (word 1, T=0), the contents of K:BASE are stored
into word 11 of the TCB and K:BASE is set to the first word
address of the active task's temp stack. The floating ac-
accumulator is then set to point to the first six cells of
the active task's temporary storage.

When the currently active task has completed all its opera-
tions, it exits through the Monitor service routine M:EXIT
which restores the general register's contents and resets
K:TCB and, if applicable, K:BASE. M:EXIT also performs
a hardware exit sequence, by which it restores the interrupt
status and the overflow and carry indicators, and returns
to the interrupt task.

FOREGROUND PRIORITY LEVELS AND |/0 PRIORITY

All foreground tasks with a priority level lower than the
I/O priority level and operated without interrupts inhibited
may use the Monitor 1/O routines without any special re~
strictions. However, foreground tasks that have interrupts
or have an interrupt level higher than the 1/O priority level
level must not use Monitor 1/O.

The recommended procedure for a task whose interrupt level
is higher than the 1/O priority level is to trigger a task
whose priority is lower than the /O priority. This lower

TEMP BASE

TCB

n-word

Word 0

1

12
13
14
15

Word 16
Word n

Reserved Area

{

ADRL Word n

Interrupt Information

TEMPBASE

TEMPLIM

K:DYN (Dynamic Temp Pointer)

Buffer Poo! LWA +1

No. Available Buffers

Use Bits

= exloc, specified on
1$ROOT card.

n = temp. specified on
1$ROOT card; first five
words of temp are float-

ing accumulator; sixth
word is used by FIO.

TEMP LIM

Supplied on 1$TCB card.

Temp Stack FWA.

Temp Stack LWA+1.

Reserve for saving con-
text of interrupt task.

Initially set to
TEMPBASE + 6.

Set to Common Base.

Common Base — Last

Loaded item/K:SEC.

Initially set to zero.

PSD Reserve

J

End of TCB

Two-word reserve that
receives the interrupted

task's PSD,

STA TCB+10
RCPY LA
STA TCB+5 Code to save registers,
[TCB pointers, and temp
RCPYI P,L pointers.
B M:SAVE
ADRL TCB)
B *$+
ADRL ENTRY Transfer Address
ENTRY
Foreground Task
Figure 6. Task Entrance Format

Foreground Priority Levels and 1/O Priority

69

priority task would then perform the required 1/O opera-
tions, Generally, these high-level tasks are for emergency
situations where no I/O is performed or when the task does
its own /O due to special requirements.

AIO RECEIVERS

An AIO Receiver is a means whereby a foreground program
can initiate an 1/O operation, release control to lower
level tasks, and regain control when the 1/O operation is
completed. The AIO Receiver itself is a closed subroutine
which operates at channel end (or zero byte count, if
specified) at the priority level of the I/O interrupt. It is
used in conjunction with an 1/O operation specifying
"initiate only and return" (no wait). Typically, in order
to maximize compute and 1/O overlay, the foreground pro-
gram will issue an 1/O request with the "no wait" option
and specify an AIO Receiver. When the 1/O operation is
successfully initiated, this foreground task exits from the
active state (by a call to M:EXIT) and is restored to the
active status at channel end by a Write Direct to trigger
the interrupt level (from its AIO Receiver). The next /O
operation for that device file=number must be a "check"
operation to complete the end-action of the file,

For I/O to RAD files, the AIO receiver may be activated
before the operation is actually complete. This will happen
whenever a transfer across a track boundary occurs, more
than X' 1FFF' bytes are requested, or a bad track is en-
countered., The calling task (not the AIO receiver) must
issue a "check" operation to complete the transfer. An AIO
receiver specified for the "check" operation, will be
honored,

Special considerations for use of AIO Receivers are:

1. The operation requesting an AIO Receiver is an
"initiate and return" operation. If the device or the
file is busy, The /O operation is not initiated and a
busy status is returned. It is the user's responsibility
to determine the course of action to be taken at this
point (e.g., loop until ready or ignore the operation).

2. If the file being used is a blocked file, an actual I/O
operation may not be required, hence no channel end
interrupt and no AIO Receiver operation, In this
instance, the X register will be set to -1 to inform
the user that the AIO Receiver will not be effective,
A "check" operation is still required on the file be-
fore another 1/O operation may be performed.

3. If the AIO Receiver merely retriggers the task that
initiated the operation, a danger exists in that it is
quite possible for the AIO Receiver to operate before
the task exits from its "active" state. Thus, the cur-
rently active task is retriggered, which results essen-
tially in a no~operation. One means of avoiding this
problem would be to have the AIO Receiver set a flag
to inform the active task that it has run, In this way,
the active task could inhibit interrupts prior to exiting,
test whether the AIO Receiver has already operated,
and if so, restore interrupt status and return to the

70 AIO Receivers/Checkpointing the Background

start of the task. If examination reveals that the AIO
Receiver has not run, the task merely exits through
M:EXIT which will properly restore the interrupt status.
Another means of avoiding this difficulty is to have
the AIO Receiver trigger a task lower in priority than
the active task. This lower priority task could re-
trigger the task initiating the 1/O operation, thereby
providing a positive trigger.

The form of the call to the AIO Receiver by the 1/O Inter-
rupt task is

LDS AIODSB (device status byte
from AIO in bits 0-7,
device number in

RCPYI P, L bits 8-12)

B AIO Receiver Address

The AIQO Receiver routine must return to the location con-
tained in the L register on entry. All registers are assumed
to be volatile, which means that they need not be saved
and restored to their former contents, Because the AIO
Receiver is processed at the priority level of the 1/O Inter-
rupt, the processing in this routine should be of very short
duration so as not to interfere with other /O operations
that may be in process. See also "End Action"in Chapter 5. I

CHECKPOINTING THE BACKGROUND

A foreground program may require use of the background
area for either instructions or data. A checkpoint feature
isincludedin RBM to allow access to the background area
by a foreground program by writing any active background
program onto the RAD and extending memory protection to
the background area.

A checkpoint operation is initiated by a call to M:CKREST
with the appropriate option. M:CKREST will return a status
specifying whether or not the request was honored. The
request will not be honored if the background has already
been either checkpointed by a foreground request or auto-
matically checkpointed as a result of loading a nonresident
foreground program extending into the background. It is
the responsibility of the user to schedule the use of the
background space by foreground programs. The actual
checkpointing is accomplished either at the priority
level of the RBM Control Task or at the priority of the
calling task.

If the checkpoint is performed at the priority level of the
calling task, a return from M:CKREST with a status of zero
(A = 0) indicates that the checkpoint has been performed.
If the checkpoint is to be performed at the level of the
calling task, the requesting program must exit its "active"
state to allow the checkpoint operation to be performed.
The program requesting the checkpoint would generally
specify a "Checkpoint Complete Receiver". This receiver
is operated at the priority level of the RBM Control Task
when the checkpoint is complete.

The receiver will generally retrigger the requesting pro-
gram to inform it of the completion of the checkpoint,
Return from the Checkpoint Complete Receiver is to the
location contained in the L registers on entry. All registers
are assumed to be volatile, and need not be saved and re-
stored to their former contents,

When the foreground program no longer requires use of the
background area, it should restart the background task by
a call to M:CKREST with the "restart" option.

FOREGROUND CODING PROCEDURES

Conformity to the foliowing conventions in coding fore-
ground programs will increase the chances of recovery from
a power failure:

1. Normally, when a task performs its own input/output,
it will inhibitinterrupts before itchecks channel status,

loads the channel registers, and issues the SIO. If the
SIO instruction occurs within the 16 cells following
the inhibit instruction, the Power On Task will be able
to determine that I/O has not been initialized on this
channel (if a power failure occurs after the interrupts
are inhibited but before the SIO is issued) and there-
fore will not simulate an /O interrupt.

If any task that uses the counter-equals-zero interrupt
resets the dedicated interrupt location to zero before
unloading or exiting, the Power Off Task will not arm
and enable this level. This will prevent spurious
interrupts,

For all Sigma 2 interrupts and the Sigma 3 external
interrupts, the interrupt status is determined through
the TCB chain (each TCB contains the address of the
TCB of the task last interrupted). Therefore, any task
that has entered its TCB in this chain will be re-
activated, Entering the TCB chain is normally per-
formed via a call to M:SAVE,

Foreground Coding Procedures 71

1. OVERLAY LOADER

The Overlay Loader can be used to create overlay programs
for later execution in either the foreground or background.
Overlaid programs can be permanently entered (as a file)
into either the system or user processor areas, or into a
temporary overlay file. Since they are stored on the RAD
as an absolute core image, they can be quickly loaded into
memory for execution. :

A general overlay structure is illustrated in Figure 7. The
structure is restricted to a permanently resident root seg-
ment and any number of overlay segments. (For background
and nonresident foreground programs, the permanent root
segment is resident only during actual execution.) For fore-
ground programs, the TCB and the initialization routine

(if one is present) must be in the root segment, but data
and instructions can be located in both the root and the
overlay segments.

A COMMON data area can also be established for use by
the root and overlay segments.

Each segment is created by the Overlay Loader from one or
more object modules (assembly language, FORTRAN, or
library routines). The control commands required to create
the overlay segments are defined in this chapter. During
execution, the Monitor service routine M:SEGLD is used to
control both the loading and the transfer of control between
various segments.

The overlay segments must be explicitly defined at load
time and explicitly called at execution time. There is no
provision for automatically calling in a new overlay seg-
ment by a subroutine reference. However, the subroutines
on a particular path may communicate with each other, with
the restriction that it is the program's explicit responsi-
bility to ensure that any subroutine referenced is cur-
rently in core. '

The Overlay Loader accepts input in Standard Sigma 2/3
Object Language from predefined, prepositioned files, and
prepares output in absolute core-image form on the RAD to
be read by the RBM Loader (M:LOAD) for later execution
in either foreground or background areas. If a resident or
nonresident program can tolerate a loading delay of 20 to
100 ms, foreground or background programs of virtually un-
limited size can be constructed by the use of overlays de-
spite limitations in available core storage.

In creating core images on the RAD, the Overlay Loader
performs the following functions according to user options:

e Satisfies external reference/definition linkages and
resolves forward reference and displacement chains.

e Searches specified libraries for unresolved references
and loads these selected routines into core memory.

e Builds the OV:LOAD table for the loading of overlay
segments.

72 Overlay Loader

e Writes the overlay cluster onto the OV file.
e Allocates COMMON.
e Allocates temporary storage stacks.

e Creates a Task Control Block (TCB) and initialization
information.

e Creates the Public Library and associated transfer
vectors (TVECT).

e Outputs maps of segment names and addresses, external
definitions, and information concerning COMMON
and temporary areas.

OVERLAY CLUSTER ORGANIZATION

The overlay cluster is the collection of absolute overlays
formed by the Overlay Loader from relocatable binary ob-
ject modules. (Note that the Loader does not accept an
absolute load origin in any input module.) An overlay
cluster usually consists of two principal sections: the root
segment and the overlay segments although it may consist

of only a root segment. Each segment consists of one or
more binary modules and associated library routines. Over-
lay segments are numbered in any order by the user, except
for the root segment, which is always designated as seg-

. ment 0. Those segments in core memory at any one time

form a path. Another overlay cluster with several paths
is shown in Figure 8. Segments are shown as horizontal
lines and, in this example, are numbered in the order in
which they are built by the Overlay Loader. Note that ot
a given node, each path associated with a branch must be
completed before a new branch is connected to this node.

The overlay cluster shown above consists of a root and seg-
ments 1 through 15. Segments 0, 1, 3, 4, 5, 6 constitute
a path. On the RAD or disk pack the root is preceded by
a file header, one RAD granule in length, that contains in-
formation by which the RBM Loader M:LOAD can correctly
read the root. The root is resident at al! times during exe-
cution of the overlay program and contains information
(OV:LOAD table) for loading of the remaining overlay
segments.

Communication between segments by external reference/
definition linkages is subject to the following restrictions:

1. No segment in a path may reference a segment in
another path.

2. The user must ensure that all communicating segments
are in core memory during execution.

Low Core

Overlay Segment n

Biank
COMMON
Root Data
(Segment Overlay Segment No. 3
No. 0) Area
Overlay Segment
No. 2]
Overlay Segment No. 2
Overlay Segment
No. 22
Overlay Segment No. 1
Root Area Overlay Area COMMON
Area
(Optional)

e —— — —— — —— ——— — —— —— — — —

High Core

Figure 7. General Overlay Structure Example

Overlay Cluster Organization 73

2_,
] 6
5 —
4 7
3 8 """_"_
0 9 —
'—_ -1
10 ,
12 ! .
11 14 .
13 '
15 }
L

Figure 8. Sample Overlay Cluster Configuration

3. Because the Overlay Loaderwill satisfy a linkage only
within a path, identical references and definitions
may be used in different paths that do not contain a
common segment. However, the user must avoid refer-
ences to the same definition in different higher level
segments.

To satisfy any remaining unsatisfied primary references,
the Overlay Loader searches the following libraries in the
specified sequence:

1. Public Library
2. Monitor Service Routines
3. Basic or Extended Library

4. Main Library

CORE LAYOUT DURING LOADING

Background memory during the operation of the Overlay
Loader is divided into four sections:

1. A fixed area large enough to contain the background
temp stack, the Overlay Loader root, and the Loader
overlays.

2. The segment table, fixed at 10(n + 1) where n equals

the number of segments, which contains the user's

OV:LOAD table.
3. A dynamic area in which the segment is loaded.

4. A dynamic area containing the symbol tables (alloca-
tion is eight words per symbol).

If areas 3 and 4 overlap at any point in the load process,
overflow occurs and loading aborts.

OVERLAY LOADER OPERATIONAL LABELS

The Overlay Loader references the operational labels listed
below. Some assignments are user-defined, while others
are handled internally by the Job Control Processor or by
the Overlay Loader itself. All other operational labels
referred to on !$LD cards must be assigned and positioned
by the user prior to the IOLOAD card.

Label Explanation
CC Control commands.
DO Control commands as read from CC, maps, and

diagnostic messages. The default assignment is
that given by the Job Control Processor on read-
ing a 1JOB card.

GO Sequential-access file that contains object mod-
ules to be processed by the Overlay Loader.
Object modules are written onto GO by a pre-
ceding processor. The loader rewinds GO
initially. GO receives a default assignment by
the Job Control Processor to the permanent file
RBMGO in the System Data area.

LI Assigned internally to System or User Library as
library searches are performed.

ocC Abort messages and Overlay Loader messages
that require operator attention.

ov Output file for the Overlay Loader containing
the completed overlay cluster. [f the user wishes
to have the overlay cluster in a permanent file,
he must key in SY (for write-protected files) and
assign OV to that permanent file. By default,
QV is assigned to the permanent file RBMOV in
the System Data area.

PI Used for loading the Overlay Loader's own
overlays. Pl is assigned by the Job Control
Processor.

X1 Temporary RAD or disk pack scratch file con-

taining the symbo! table for each segment.
X1 is assigned by the Job Control Processor.

RS Assigned internally to read the RBM Symbol
Table (RBMSYS) from the System Data area.

LS Assigned internally to read the Public Library
Symbol Table (LIBSYM) from the System Data
area.

ID An optional operational label used to write

the idents of nonlibrary programs for use by
Debug at execution time. If the user assigns
ID, the assignment must be for a blocked file
that has a record length of five words. By
default, ID is assigned by the Job Control Pro-
cessor to RBMID (a one-sector file) in the System
Data area.

74 Core Layout During Loading/Overlay Loader Operational Labels

MAP

Three types of maps may be output to the DO device
following PASS2, according to one of three MAP con-
trol commands that may be input: a SHORT map (! $MS),
LONG map (!$ML), or PROGRAM map (1$MP). If
no map control command is specified, no map will be
output.

Figure 9 shows the format for a LONG map. Note that
DEFs in the Permanent Symbol Table are mapped after the
Overlay Task line. The format for a PROGRAM map would
be the same as the LONG map except that library and
Permanent Symbol Table symbols are suppressed. The lines
of the map that are flagged with an asterisk (*) show the
format and output of a SHORT map (in an actual SHORT
map no asterisk would appear in the listing). A definition
of each item of the map is included in Figure 9.

*MAP
FO
*0OVERLAY TASK {BA} ORG = xxxx HLLOC = xxxx CBASE = xxxx CSIZE = xxxx UMEM = xxxx SECT = xxxx
NONE
*ROOT ORG = xxxx LWA = xxxx LEN = xxxx TRA = {xxxx} SEV = xxxx OV:LOAD = xxxx
S.S.S.S L E/M
(£,] vEF s.s,s, 4S55¢8,8 L/T S/U/P B/EM yyyy
[flfz]REF $15,8,8,58,5.S, LI S/u zz22
*SEGMENT IDENT NODE ORG LWA LEN TRA SEV
XXXX XXXX XXXX XXXX XXXX XXXX XXXX
[£,] DEF etc.
[flfz]REF etc.
REF
*SEGMENT
*SEGMENT
*ERRSEV = xxxx
*END MAP
where header keywords have the following meaning:
Overlay Task Keywords
ORG First word address of the Overlay Task area. It is the FWA of the Temp stack.
HLLOC Last word address of longest segment.
CBASE Base of COMMON.
CSIZE Largest COMMON size encountered.
Figure 9. Load Map Format

Overlay Task Keywords (cont.)

UMEM

SECT

Root Keywords

ORG

LWA

LEN
TRA

SEV

OV:LOAD

General Keywords

fif2

The number of locations between the end of the longest path, and either the beginning
of COMMON or the end of the assigned task area.

The number of sectors required to store entire overlay cluster.

FWA address of the root. In the foreground, this is assumed to be the address
of the TCB; in the background, it is the FWA of the root.

Last word address of the root segment. The area from ORG to LWA includes
the root code and the OV:LOAD table (and in the foreground, the TCB).

LWA-ORG+1.

Background — last end transfer encountered on a module used to form the root. If there

is no transfer address, 'NONE!' is output.

Foreground — the entry address of an initialization routine that arms and optionally
triggers interrupts at run time. If the Loader builds the TCB, it is assumed that no
such initialization exists and TRA=NONE.

Error severity encountered during loading binary modules. Taken from the END item of
the binary module.

Address of the OV:LOAD table.

Error and identifier flags preceding external definitions and references. Possible flags
are:

Double definition or reference.

(DEF) — a definition declared, but given no value.

D
U
u (REF) — reference unsatisfied in this path.
P Primary reference.

S

Secondary reference.
An external definition.
An external primary or secondary reference.
EBCDIC DEF/REF name of one to eight characters.
Library or Input REF/DEF.
System, User, or Public Library.
Basic, Extended, or Main mode.
Value of a DEF.

The number of the segment in which this reference was satisfied.

For unsatisfied
references, zzzz is blank. :

76

Figure 9. Load Map Format (cont.)

Segment Keywords

is the root, 0 is output.

IDENT Numerical identifier of this segment as found as the first parameter on the !$SEG card.

NODE The numerical identifier of the segment to which this one will be attached. f NODE

ORG Beginning location (execution) of this segment. The point in core at which loading
begins. The first reserves before data in a segment are not output.

LWA LWA of this segment. Includes areas defined by RES and ORG.

LEN LWA-ORG+1.

TRA The last encountered transfer address is placed as an entry point in the OV:LOAD table
for this segment.

SEV Same as for ROOT.

ERRSEV Total error severity for loading process (0 or 1). If any SEV >0 or there are unsatisfied
primary references, ERRSEV=1. Only in forming a PUBLIB do double DEFs cause
ERRSEV=1.

END MAP Completion of loading process.

Figure 9. Load Map Format (cont.)
CALLING OVERLAY LOADER X indicates that the Loader is to abort the job if

The Overlay Loader is requested via an IOLOAD com-
mand which causes the root segment of the Loader to
be read into core memory from the RAD. The form of
the command is

F

IOLOAD [segments, {B

} ,S,D, X, cmn]

where

segments denotes the number of segments in the
overlay cluster. If "segments" is not specified,
a zero is used, denoting that only a root segment
is to be loaded. The value of the segments param-
eter may exceed the actual number of segments to
be loaded.

ForB specifies either a foreground (F) task or a
background (B) task. The default case is
background.

S specifies a step mode of loading to be used for
paper tape input.

D indicates the ident of each nonlibrary module is
to be written to operational label ID for use by
Debug af execution time.

a severity error greater than zero is encountered
during loading. The loading procedure is com-
pleted and the map is output.

cmn for background tasks, cmn denotes an optional
COMMON size; for foreground tasks, cmn denotes
either a base for COMMON or, in the case of
zero COMMON, the upper limit of the task area.

When the step mode of loading is defined, the operator is
notified ofter the loading of edch module from paper tape
by the message

HIBEGIN WAIT

Depressing the console interrupt button and keying in an S
will initiate either the loading of the next module from the
paper tape unit or the reading of the next control command.
An X response causes the loading process to abort.

In allocating COMMON for background programs, the
Overlay Loader compares the cmn parameter with the first
nonzero COMMON size allocation value encountered in
foading and employs the larger of these two values. The
COMMON base is set by subtracting the COMMON size
from K:UNAVBG.

For foreground programs having COMMON, cmn denotes

the base (i.e., FWA) of COMMON. In this case the
effective upper limit of the program is cmn plus the largest

Calling Overlay Loader 77

COMMON size allocation value encountered in loading.
For foreground programs in which COMMON is allocated,
but in which cmn has not been specified, the COMMON
base is set by subtracting the first nonzero COMMON size
allocation value encountered from K:BACKP-1. For fore-
ground programs having no COMMON, cmn may be used
to specify an upper limit for the program. If the program
exceeds the limit, the Loader aborts. The default value
of the area upper limit for foreground programs without
COMMON is the upper limit of the nonresident foreground
area (K:BACKP-1).

The Loader makes no distinction between programs loaded
in resident and in nonresident foreground.

Reading an !ECD control command causes the Overlay
Loader to satisfy forward references, output any specified
map, close files, and return control to RBM via M:TERM.
The form of the command is

1EOD

CONTROL COMMAND FORMAT

Except for the !|OLOAD command, which is read by the
Job Control Processor, the Overlay Loader control com-
mands are read from the CC device under Loader control.
The general format of control commands is

!$mnemonic parameter

where

! identifies the record as a control command.

$ indicates that the control command is unique to
the Overlay Loader.

mnemonic is the code name of an Overlay Loader
control command and begins immediately follow-
ing the 1$ characters.

parameter is a series of optional or required param-

eters unique to the specific command. Theformats
of parameters are (1) a decimal integer of up
to five positive numbers but having a value less
than 32,767; (2) a hexadecimal string of the
form xxxx; (3) an EBCDIC string of up to eight
characters but not exclusively characters 0

78 Control Command Format/Conirol Command Repertoire

through 9; or (4) a string of the form EBCDIC
string = hexadecimal number.

From one through eight blanks are permitted between the
mnemonic and the first parameter. If more than eight
blanks are detected, the parameter list is considered empty.

~ The only allowed delimiter between parameter fields is a

comma; no embedded blanks are allowed in or between any
fields. A single blank terminates the parameter string.
Two successive commas indicate an empty field. Comments
are allowed on a control card.

CONTROL COMMAND REPERTOIRE

BLOCK The I$BLOCK control command defines oper-
ational labels that may require blocking buffers at run
time. The list of such labels along with limits of avail=
able memory will be passed via the file header to
M:LOAD, which will allocate a blocking buffer pool at
run time. The pool will be utilized dynamically to
provide blocking buffers in cases where a call to RBM
routines M:READ or M:WRITE is not preceded by a call
to M:OPEN. A call to M:CLOSE may release any such
buffers. Thus, if two operational labels were to use a
blocking buffer area at different times, the first might
release the area for use by the second. Only one of
the two labels would be required on the !$BLOCK
command.

M:LOAD checks which of the operational labels are as-
signed to block files at run time to make the pool allo-
cation. If such an allocation overflows the available
memory space (between the end of the longest path and
COMMON), the execution aborts. However, the user
may define his own blocking buffer by specific calls to
M:OPEN. Such an area should be in a reserved area
of his own path. He should not use the dynamically
allocated pool area, and blocking buffers may not be
allocated in temporary stacks. Only one 1$BLOCK
command is allowed in a single job step. The format
of the 1$BLOCK command is

1$BLOCK oplb],oplbz, ven ,c::plbn

where oplb; defines an operational label (which is a two-
letter mnemonic or a FORTRAN device unit number; e.g.,
BI, SI, F:106). The oplb; parameter may not be a device-
file number or file name. The oplb must be assigned to
a block file.

LIB The !$LIB conirol command specifies a new default
library loading mode for the entire loading process. If the
LIB command is not present, the Overlay Loader follows

the default case (Basic System Library). I$LIB cards may
occur at any point in the control deck and will take effect
from that point. The format of the command is

I$LIB library,x[,y]

where
library must be one of the following EBCDIC codes.

Code Library

B Basic
E Extended

X,y specify the order of search. The x and y pa-
rameters are either of the following EBCDIC codes.

Code Library

S System

U User

The order in which they are specified determines the
order of search. Note that if y is not specified, only
x will be searched.

MS ML MP The MAP control commands specify that
map information is to be output on DO. The three forms of
map commands are shown below.

If the 1$MS (Short Map) control command is specified, only
root and segment headers will be output. Also output is a
summary containing the origin of the overlay program, the
length of the longest path, temp stack size, memory that is
available for the blocking buffer pool, and the COMMON
base. The format of the command is

1$MS

If the !$ML (Long Map) control command is specified, the
short map plus external references and all external defini-
tionsand their values including the librariesand permanent
symbol table are output. Double definitions, and definition
declarations that were not given a value are flagged D

and U, respecitvely. Unsatisfied primary references

are flagged with UP, unsatisfied secondary references with
US. The format of the command is

1$ML

The output of the | $MP control command is identical to
that of 1$ML, except that library definitions and references
and the permanent symbol table are suppressed. The format
of the command is

1$MP

If relevant, information concerning the Public Library is
also mapped.

TCB The 1$TCB control command indicates (for a fore-
ground task only) that the Overlay Loader must create a
TCB and reserve a PSD [ocation, and must generate a call
to RBM routine M:SAVE. In addition, information to ini-
tialize the TCB at run time will be passed in the file header.
If no 1$TCB command is present, it is assumed that a TCB
has been assembled into the root segment. Since the back-
ground TCB lies in protected memory, it cannot be assem-
bled into the root of the background overlay cluster, but the
necessary information is passed by the Loader to M:LOAD
via the file header. Therefore, the TCB option applies to
foreground tasks only. The !$TCB command must precede
the !$ROOT command. The format of the command is

1$TCB Wi W,

where w. are the values to be placed in words 1 and 2 of
the created TCB. (See Chapter 6, Real-Time Programming.)

The Overlay Loader will handle specific and default
cases of program execution and TCB initialization within
the framework of the following restrictions:

o The Overlay Loader defines all background Task Con-
trol Blocks completely, using the value of the temp
parameter on the !$ROOT card, load information, and
the ! $BLOCK parameters.

e In foreground tasks, if the user assembles the TCB as
part of the program, it either must contain atl informa-
tion as data or as external references satisfiable at
load time, or be initialized by the task itself. A trans-
fer address is assumed to be a transfer to an initializa-
tion section that will do any required housekeeping,
arming, enabling, or triggering the task. If no trans-
fer address exists, M:LOAD will arm and enable and,
optionally, trigger the task using information in
words 1 and 2 of the TCB.

e If the Overlay Loader initializes the TCB by means of
the TCB parameters, it does so completely, using load
information and values on the 1$TCB and 1$BLOCK
cards. No partial initialization of a TCB is allowed
with the exception of the blocking buffer pool. If a
user builds his own TCB, the TCB must begin at the

Control Commond Repertoire 79

execution location plus the "temp" value specified on
the 1SROOT command.

e For foreground tasks for which the Loader builds a TCB,
the Loader will create the PSD reserve and a call to
M:SAVE. The user's root is then entered either at the
location specified in the transfer address, or at the
FWA of the root when the transfer address is missing.
The map will indicate a transfer address of "NONE"
for the root.

The user exits with either a call to the RBM routine M:EXIT
or by a standard exit procedure.

Public Library routines and Monitor service routines called
by the user program will require temporary storage areas
that are dynamically allocated at execution time. These
temporary storage areas must be allocated in a fixed storage
stack that is reserved by the Loader at load time on the
basis of the temp parameter on the ! SROOT control com-
mand. In addition, the Loader will insert in the TCB the
first and last word addresses of the area. The temp area
will be allocated preceding the root segment. It need not
be a reserve in the module.

For more information on initialization and structure of TCBs,
see Chapter 6.

ROOT The ISROOT command specifies that the modules
that follow it constitute the root segment of the overlay
cluster. A ISROOT command must precede all 1$SEG com-
mands, and may be followed by 1$LD, I $SINCLUDE, !$MD,
I$LIB, and !$LB commands, which cause the loading of
those modules that form the root segment. Loading of the
root will begin at the first cell following the temp stack for
the background task. An execution bias may be specified.
The user must ensure that the root segment, exclusive of any
library loading, is less than 32K bytes. The root and its
library are written as two records, Therefore, the library
portion of the root may also be a maximum of 32K-1 bytes,
which gives a maximum root size of approximately 32K
words, The format of the command is

1SROOT [’remp,exloc,oplb,n]

where

temp defines the size of the overlay cluster's tempo-
rary stack needed for the largest possible nesting
of Public Library and Monitor service routines.
The default size is 80 cells.

exloc specifies the beginning location of the area
in memory that the overlay cluster will occupy at
execution time. The default case is K:BACKBG
for a background task and K:NFFWA for a fore-
ground task. The temp stack will be allocated at
exloc.

80 Control Command Repertoire

oplb,n specifies that n modules are to be loaded
contiguously from the operational label oplb. No
default is provided.

Note that if the oplb parameter is absent, 1$LD (Load) or
ISINCLUDE control commands must follow !$ROOT to
specify loading. If oplb is present and the n param-
eter is empty, loading proceeds from oplb until an !EOD
is encountered.

LD The I$LD control command identifies one or more
modules to be loaded as part of a segment. Each input file
must be ordered in the same sequence as the 1$LD cards in
the control stack accessing that file. The Overlay Loader
reads only relocatable binary modules from the GO file and
other input files specified on 1$LD, $SEG, and !$ROOT
cards. All files must be pre-positioned (GO is rewound by
the Loader), and the modules must be in the same position
on each file as calls on that file. The use of the IDNT on
the 1$LD card ensures the loading of the proper module.
Note that the file must be positioned to the proper module
in the file when the Loader reads from that file. Since
there are no file-positioning control commands recognized
by the Overlay Loader, each file must be constructed in
correct sequential order. The form of the command is

1$LD [oplt] , [‘de"’]

nm

where

oplb is the operational label of the medium from
which the binary module is to be loaded. The
default case for an empty field is GO.

{lden'r} ident is an EBCDIC representation of the

nm IDNT of the program to be loaded. It is

used for checking purposes only. If nm is speci-
fied, it indicates the number of modules to be
loaded from oplb; no check of any ident is made.

If this parameter is empty or is an ident, one mod-
ule is loaded.

LB The $!LB command controls the search of libraries
(for this segment only) to satisfy external references en-
countered during the loading of modules forming the seg-
ment. If the I$LB control command is omitted, the
Overlay Loader will first attempt to satisfy all references
by definitions in other segments of that path or from the
root, and then will search the libraries specified by !$LIB
or by the default case. Individual 1$LB cards supersede
I$LIB or default for that segment only. Libraries are
searched only on occurrence of a 1$SEG or 1EOD contro!
command. !$LIB and !$LB cards only set the mode and se-
quence of search. Only libraries on the RAD or disk pack
may be loaded selectively using the !$LB command. To

input "library" programs from other media, the user must
use standard !$LD commands. The format of the com-
mand is

1$LB library, m[, n]

where
library must be one of the following EBCDIC codes:

Code Library

B Basic
E Extended

m [, n] specify the order of search. The m and n
parameters are either of the following codes:

Code Library

S System

U User

If n is not specified, only m will be searched. There are
no default cases for E, B, m, and n.

INCLUDE The I $INCLUDE control command specifies
external definitions in those library modules that are to be
loaded with this segment, even though they are not refer-
enced in the segment. Their definitions will be included

in the Symbol Table for use by higher-level segments.

More than one ! $INCLUDE command may be used. Li-
braries are searched according to a preceding !$LB or 1$LIB
card or the initial default case. The format of the com-
mand is

I$INCLUDE def_ ,def,, ..., ,def
1 2 n

where def; is an external definition of a library program to
be included in the segment.

MD The !$MD (modify) control command is used to
change core locations at load time before the absolute
overlays are written out onto the OV file. !$MD commands
must be inserted within a SEG sequence and apply only to
the segment being loaded. A check is made that the
effective address of the | $MD command lies in the segment

and that any labels used are defined for the path the seg-
ment lies in. The Overlay Loader aborts if the modifica-
tion location lies outside the limits of the segment.
Inserted values are not tested for range. External symbols
(definitions) used in loc or value must have been previ-
ously defined. The format of the command is

1SMD loc, value [, vclue] ,voluez, .. ,valuen]

where
loc specifies the execution location of the first
modification.
value; is the hexadecimal quantity to be inserted

at loc + i (for example, value is inserted at loc,
vclue.I at loc + 1, etc.).

Both the loc and the value; parameters are subject to the
restrictions set forth in "Control Command Format". Note
that it is not possible to modify a library module by use of
an 1$MD control command.

SEG The 1$SEG control command defines the modules
that will form a segment. Numbers used to define a segment
must be unique. Segment identifier numbers need not be
consecutive. A segment, including its library, is restricted
to a maximum of 16,112 bytes since the segment and its
fibrary are written as one record on the RAD.

Each !$SEG or $IROOT control command may be followed
by 1$LD, ISMD, !SINCLUDE, !$LIB, and !$LB commands
to load the modules to form that segment. The loading for
a segment terminates on a new ! $SEG control command.
The control command stack is terminated by an IEOD. The
user may not defer library loading to a higher level seg-
ment. The Loader will attempt to satisfy all references
present at a level from the libraries specified on !$LB,
1$LIB, and !$INCLUDE commands or from the default li-
brary case. A given library is searched only once per
segment. The format of the command is

I$SEG si, sn[, oplb, n]

where
si is a number less than or equal to X'FF' used to
identify the segment being loaded. It will be
used to call the segment at run time.
sn is the number of the segment to which this seg-
ment is attached.
oplb,n specifies that n modules are to be loaded

contiguously from the operational label oplb.

Control Command Repertoire 81

The following rules should be observed in defining segments
for the overlay cluster:

1. The longest segment must fit into core with the Loader
and its tables. If a segment is too long, it may be re-
assembled as two modules and loaded as two segments.

2. The Loader will first attempt to satisfy library refer-
ences using the Public Library and then will search the
appropriate libraries on the RAD or disk pack. Using
the 1SINCLUDE command, other often-used library
routines can be loaded with the root where they will
be accessible to all segments. However, library rou-
tines loaded in any segment will be accessible only to
segments in the same path.

At execution time an explicit call to RBM routine M:SEGLD
with the segment identifier numberand the ADRL OV:LOAD
causes the reading of that segment into memory from the
OV file. Thus, any segment may, by an explicit call,
cause any other segment to be loaded for execution.

PUBLIB The 1$PUBLIB control command indicates that
the Overlay Loader is to create a Public Library using mod-
ules that follow and/or modules from selected libraires.

The Public Library is biased at the location specified in
K:PLFWA of the RBM. Each symbol is flagged as Extended,
Basic, or Main according to control information on the
ISPUBLIB card. However, a library may contain routines
of more than one mode. Such identical definitions of
different modes are differentiated in the Symbol Table
(LIBSYM) and are not considered duplicate.

When library routines are part of the Public Library, they
must be reentrant and therefore must use the dynamic tem-
porary stack (specified as the temp field on the I $ROOT
command) for their temporary storage space. To conserve
core space when forming the Public Library, the Loader
will remove any trailing RES from a library routine and will
also change the appropriate word in the calling sequence
for M:RES, M:PUSH, or M:PUSHK so that the dynamic
temporary stack will be used for temporary storage space.

A severity level of 1 is set if unsatisfied references or
double definitions are encountered during the loading of a
Public Library, and the library will not be written onto the
PUBLIB file. When a Public Library is being created, the
Overlay Loader creates a new Public Library on the RAD
or disk pack. The Public Library just loaded is written
onto the PUBLIB file in the User Processor area. The total
length of the Public Library must not exceed 8191 words.
The Monitor Services Transfer Vector (TVECT) file is read
from System Processor area, and the Public Library section
is updated and written onto TVECT. A new Public Library
Symbol Table is written to LIBSYM file in the System Data
area. The new LIBSYM is incompatible with the Public
Library currently in core. All files are closed and nor-
mal termination through M:TERM takes place. The new

82 Loader Error Messages

Public Library is then loaded into core by rebooting the
RBM. The format of the command is

1$PUBLIB library mode L oplb, n]

where

mode must be one of the following EBCDIC

codes:
Code Mode
B Basic
E Extended
M Main

A new !$PUBLIB ¢ontrol command must be pro-
vided each time mode is to be changed.

oplb,n specifies that n modules are to be loaded
contiguously from the operational label oplb.

1$LD, 1$LB, 1SINCLUDE, and !$MD commands are hon-
ored when using 1$PUBLIB in the same manner as for the
1$SEG command. 1$ROCOT, 1$TCB, and ! $SEG commands
may not be used in conjunction with the !$PUBLIB command.

END The I1$END command is treated exactly like an
!EOD command. It should be used in place of |EOD when-
ever multistep job stacks are to be prestored on a RAD file.
The Utility COPY routine will not interpret this com-
mand as end-of-file (EOF). The format of the command is

I$END

LOADER ERROR MESSAGES

The Overlay Loader program outputs messages on both OC
and DO concurrently with the load operation. If OC and
DO are assigned to the same device, duplication of mes-
sages on DO is suppressed. If an operator response is re-
quired, the message

IBEGIN WAIT

is written on OC and DO. The operator activates the con-
sole interrupt and keys in either of the following codes.

Code Meaning

S Continue.
X Abort Overlay Loader and return control
to RBM.

The format of the error message where an operator response 2. Response messages, requiring an S or X key-in from
is required is

the operator.

OLERR xx

3. Abort messages, upon which the Overlay Loader exits

where xx is a two-letter mnemonic that identifies the error. via the RBM routine M:ABORT (see Appendix C for

abort codes, abort messages, and their meanings).

The types of Overlay Loader messages are as follows:

1.

Warning messages, after which loading

continues.

The Overlay Loader error messages are given in Table 18
below.

Table 18. Loader Error Messages

Message

Meaning

LIBSYM UNDEFINED'

OLERR CC !IBEGIN WAIT

OLERR CS IBEGIN WAIT
OLERR 1B ! IBEGIN WAIT

OLERR ID !IBEGIN WAIT

OLERR IS ' BEGIN WAIT

OLERR SQ !'!BEGIN WAIT

OLERR TA

OLERR UR

TOO MANY DEFs'

There was no file entry on the System Data area of the RAD or disk pack for
the LIBSYM table.

A control command card has a format or parameter error. An S response
causes the next control command to be read in from CC. This may be a
corrected command to replace the one in error.tt

There was a checksum error on a binary record. An S response causes the
record to be reread.

Ilfega! binary format (that is, the first word was not 'FF' or '9F') was
detected. An S response causes the record to be reread.'t

The indent on the binary module just loaded does not compare with the ident
specified on the I$LD command. On an S response, the Loader accepts the
binary module as is and continues processing.

Control commands were improperly sequenced in the control command stack.
An S response causes the next control command to be read. However, if the
sequence error was due to a SEG command, the Loader aborts.tt

There was an incorrect sequence number on a binary record. An S response
causes the record to be reread.t

No transfer address was encountered in the loading of the root segment. This
is only a warning message. The Loader sets a default transfer address as the
first word of the program.

There were unsatisfied references in the path. This in only a warning message.

There were more DEFs in the Public Library than were allocated at system
generation.

HThis message may be written on DO during writing of the Public Library, LIBSYM, or TVECT table onto the RAD or I
disk pack. If the alarm occurs, the Public Library was not completely written and will have to be reloaded after the

error is corrected.

1.'rThe Loader does not reposition the record for rereading. If paper tape or cards are repositioned, the record is reread;
if they are not repositioned, the next record is read. If the record is on RAD, disk pack, or magnetic tape, the Moni- I
tor 1/O error recovery procedures positions to the beginning of the next record. However, the WAIT permits the
taking of dumps, etc., before changing the environment.

Loader Error Messages 83

8. RAD EDITOR

INTRODUCTION
The RAD Editor controls RAD and disk pack allocation by

generating and maintaining directories for all permanent
files. Through control command input, the RAD Editor can
e Add or delete entries in permanent file directories.

o Copy data from one file into another.

e Maintain library areas on RADs or disk packs for use
by the Overlay Loader.

e Copy an object module contained in a library.
e Map file allocation.
e Dump contents of random-access files.

e Save the contents of RADs or disk packs in self-
reloadable form.

e Clear any permanent area.

e Skip bad tracks when allocating a file area.

The RAD Editor generates and maintains directories for the
following permanent areas:

e System Processor area (SP)

e System Library area (SL)

e System Data area (SD)

e User Processor area (UP)

e User Library area (UL)

e User Data area (UD and Dn)

Size and location of each permanent area are contained in
the RBM Master Directory. The RAD Editor allows mapping
of all areas, including Checkpoint and Background Temp
areas, and the dumping of all random-access files.

PERMANENT RAD/DISK PACK AREA ORGANIZATION

Every permanent area has its own directory that begins in
the first sector of the area. The first entry contains the
address (if any) of the bad tracks within the area. Each
succeeding directory entry indicates the name, length,
location, and format of a file in the permanent area.
Directories are linked; that is, after a sector of a directory
is filled, the next available sector within the permanent
area is allocated as the continuation of the directory.

84 RAD Editor

The permanent file directories are software write-protected.
There are four levels of write protection: no protection,
write permitted by RBM only, write permitted by foreground,
and write permitted by background. Write protection for
files is a user option. Therefore, an SY key-in must be
initiated before updating or initializing a file directory,
updating any protected file, or copying data into a pro-
tected file.

Space with an area is allocated sequentially, and tracks
designated as bad are skipped at file allocation. The first
file in the area begins in the second sector and extends
over an integral number of sectors. Thus, every file be-
gins and ends on a sector boundary. When a directory entry
(and, effectively, its corresponding file) is deleted, the
area formerly occupied by the file is left unused. In nor-
mal operation, the RAD Editor makes no attempt to recover
these unused areas. Therefore, the addition of a file
may cause overflow of the permanent area although ample
space may be available. However, RAD squeezing can
be requested via an Editor 1#*SQUEEZE command to over-
come this problem. Squeezing recovers the unused stor-
age within a permanent area by regenerating the directory
and moving files.

Before any permanent file can be written (using the
Monitor routine M:WRITE), space must be allocated for
the file. This is accomplished by requesting the RAD
Editor fo add a new entry to the designated directory.
Control commands allow directory entries to be added or
deleted.

DATAFILES

Ordinarily, data is not written in permanent files by the RAD
Editor. Data files are normally written by user programs.
However, a RAD Editor control command can be used to
copy data from one random-access file to another. Copied
files may be temporary or permanent files.

LIBRARY FILES

System and User Library files, which are searched by the
Overlay Loader for external references, are generated and
maintained by the RAD Editor (the only processor that
writes in these files).

A library area (either the System Library area or the User
Library area) contains six files:

1. Module Directory File (directory of library modules).
2. EBCDIC File (list of all library definitions/references).

3. Extended DEF/REF File (index o extended precision
definitions/references in EBCDIC file).

4. Basic DEF/REF File (index to standard precision
definitions/references in EBCDIC file).

5. Main DEF/REF File (index to main definitions/
references in EBCDIC file).

6. Module File (library object modules).

These files are generated and maintained from information
in control commands and object modules placed in the
library by the RAD Editor. Special commands are supplied
to allow the addition and deletion of object modules; these
control commands will cause the six files in the RAD Li-
brary area to be updated. A control command allows an
object module contained in a library to be copied onto BO.

Any random-access or sequential-access file (either tem-
porary or permanent) can be dumped on LO.

The RAD Editor can save the contents of a permanent area
and the RBM bootstrap in a self-reloadable form. The
saved image contains a bootstrap loader, the execution of
which restores the RBM bootstrap and the permanent area

on the RAD or disk pack.

Updating or squeezing of permanent areas and library files
that contain information for real-time programs must not
occur while the foreground is using these permanent areas
or files. The user must ensure that the RAD Editor is not
modifying a permanent area while a foreground program is
using it.

ALGORITHMS FOR COMPUTING LIBRARY FILE SIZES

The following algorithms may be used to determine the
lengths of the six files in a library area:

The number of granules in the MODIR file is

mopr = &0 ti
n g
where
i is the number of modules to be placed in

the library (including COMMON, extended-
precision, and single-precision routines).

g is the granule size in words.
The number of granules in the EBCDIC file is

ecpic = 20 *d)
n g

where
d is the number of unique DEFs and REFs in the
library (including main, extended-precision,

and single-precision routines).

g is the granule size in words.

The number of granules in the EDFRF file is

n
2+ 2 2+p +d)
VE| g 4
EDFRF =
n g
where
n is the number of routines in the extended-

precision library.

rg is the number of REFs in the extended-precision
library. '

dg is the number of DEFs in the extended-precision
library.

g is the granule size in words.

The number of granules in the BDFRF file is

n
242 +r +d)
"

BDFRF_ =
n 9
where
n is the number of routines in the single-precision
library.
r is the number of REFs in the kth library routine

in the single~precision library.

d is the number of DEFs in the kth library routine
of the single-precision library,

g is the granule size in words.
The number of granules in the MDFRF file is
n

243 2+, +d)
i=1 o

MDRFR =
n g

where
n isthe numberof routines in the COMMON library.

r, is the number of REFs in the jth library routine

}'in the COMMON library.

d, is the number of DEFs in the jth library routine
1 in the COMMON library.

g is the granule size in words.

Permanent RAD/Disk Pack Area Organization 85

The number of granules in the MODULE file is

N 60
MODULE = '; o ()

where
n is the number of modules in the library (includ-
ing COMMON, extended-precision, and single-
precision routines).
g is the granule size in words.
c. is the number of record images in the ith library

routine.

RAD EDITOR OPERATIONAL LABELS

The RAD Editor requires the operational labels listed below
for input/output. These labels are reserved for use by
the RAD Editor and must not be used on !*DUMP or
I#FCOPY commands.

The following labels must be assigned before requesting the
RAD Editor:

Label Explanation

BI Object module input to System and User
Library

BO Output of copies of object modules

from the System and User Libraries.
CC Control command input.

DO Log of control commands, error messages,
and operator key-ins.

LO Maps of directories and dumps of files.

OC Messages to the operator and key-ins
from the operator.

X1-X6 Assigned and used internally by RAD
Editor for RAD maintenance.

CALLING RAD EDITOR

The RAD Editor is requested with a IRADEDIT control com-
mand. The IRADEDIT control command is read from CC
and causes the root segment of the RAD Editor program to
be loaded into core memory from the RAD. It has the format

IRADEDIT

Reading an IEOD from CC causes the RAD Editor program
to retum control to the Monitor. The form of the com-
mand is

IEOD

CONTROL COMMAND FORMAT

All RAD Editor control commands are input from CC and
listed on DO. If CC and DO are assigned to the same de-
vice, the commands are not listed. The general format is

I *menmonic specification

where
! identifies the record as a control command.
indicates that the control command is unique to
the RAD Editor.
mnemonic is the code name of a RAD Editor com-

mand immediately following the ! # characters.

specification is a series of required or optional
parameters unique to the specific command. The
conventions used in specifying parameters are
(1) a string of up to five decimal digits, having
a value less than 32,768, denotes a decimal in-
teger; (2) a string of the form +xxxx is treated as
hexadecimal; (3) all other strings are assumed to
be nonnumeric.

One or more blanks must separate the mnemonic and speci-
fication fields, but no blanks may be embedded within a
field. An empty parameter in the specification field is
denoted by a comma. However, commas may be omitted
for empty trailing parameters. A control command is
terminated by the first blank after the specification field.
If the specification field is absent and a comment follows
the mnemonic field, the command is terminated by a period.
The first two characters of the mnemonic portion of the
command are sufficient to define the command; the re-
maining characters may be omitted since they are ignored
if they are present.

CONTROL COMMAND REPERTOIRE

ADD The 1#ADD command adds a new entry to the
specified permanent file directory. It defines the name,
write-protection, format, and iength of a new file. Adding
an entry to a directory causes space to be allocated for

86 Calling RAD Editor/Control Command Format/Control Command Repertoire

the new file. Once space has been allocated, data can be

written on the file.

The form of the command is

1#ADD directory, name, file P record] [, format]]

l— [, write] [, foreground]

where

directory

name

file

record

specifies a permanent file directory
(i.e., not BT or CP). It must be a currently
defined area.

is the file name. The file name is composed
of three to eight EBCDIC characters. If a file
contains a processor that is loaded with a pro-
cessor command (Yname), the name of the file
must be identical to the one used in the com-
mand. Before using the 1#LADD, !#LREPLACE,
and 1 *LDELETE commands (explained below),
entries for six special files in the library area
(SL or UL) must be added. The codes for the

library files must be one of the following:

Code

File

MODIR Module Directory

EBCDIC EBCDIC

EDFRF Extended DEF/REF

BDFRF Basic DEF/REF

MDFRF Main DEF/REF

MODULE Module
For data files, name is determined by the name
parameter.

is the number of records in the file, and must
be either a hexadecimal value or a decimal
integer.

is the maximum number of bytes per logical
record and may not exceed 32, 168 bytes. "Rec-
ord" may be expressed as either a hexadecimal
value or a decimal integer. The meaning of "rec-
ord" is determined by the format parameter. The
record parameter need not be input for fibrary or
processor files,! since these have predefined
record lengths. For blocked sequential-access

"For allocating files, if the last character of "directory™
is P, the file is a processor file by default; if the character
is D, the file is a data file by default.

format

write

foreground

DELETE

files, logical record size is 120 bytes by default.
For blocked compressed sequential-access files,
the logical record size is 80 bytes by default.

For unblocked sequential-access files, logical
record size is the sector size of the device by de-
fault. For random-access files, "record" is the
granule size. The default granule size is the sec-
tor size of the device, and for random files, granule
size is the sector size of the device by default.

specifies the structure of the file. It must
be one of the following codes:

Code Format

B Blocked sequential-access file

C Blocked compressed sequential -
access file

R Unblocked random-access file

U Unblocked sequential-access file

If omitted, the format parameter is B for data files
and R for all library or processor files.t

specifies write-protection for the file. It
must be one of the following codes:

Code Directory

B Write permitted from background
F Write permitted from foreground
N No write protection

R Write permitted from RBM only

If omitted, the write parameter is N for all files.

is applicable only if "directory" is UP.
If "foreground" is F, the named file contains a
resident foreground task. If "foreground" is N or
omitted, the file does not contain a resident
foreground task.

The !#DELETE command deletes on entry from

the specified permanent file directory. The space formerly
allocated to the file becomes unused. The space is recov-
ered if the file being deleted is the last file in the area.
The form of the command is

I#DELETE di rectory, name

where

directory

specifies a permanent file directory. [t
must be a currently defined file.

Control Command Repertoire 87

name is the file name for the entry to be deleted.
The file name is composed of a maximum of eight
EBCDIC characters, in which at least one char-
acter is alphabetic.

FCOPY The !#FCOPY (File Copy) command copies data
from one random-access file to another. The file copy pro-
cess terminates when an end-of-tape is encountered on
either the input or the output file. The form of the com-
mand fis

I#FECOPY oplb, oplb,

where

opllgi is the operational label or FORTRAN device
unit number (e.g., F:109) of a temporary or
random-access RAD file. The COPY Utility
Routine (see Chapter 10) must be used to copy
sequential-access files.

Oplb.l is the input file.

op]bz is the output file.

LADD The !#LADD (Library Add) command adds an
object module to the designated library. The object mod-
ule is read from BI, checked for sequence and checksum
errors, and stored in the Module File within the library.
From the data in the object module and on the control com-
mand, the information about the module is extracted and
placed in the Module Directory File (MODIR), the EBCDIC
File, and one of the three DEF/REF Files (either MDFRF,
BDFRF, or EDFRF File) as indicated in the library param~
eter. BI may be assigned to any device; if Bl is assigned

to the RAD, it must be a sequential file. The object mod-
ule on BI must be in Standard Sigma 2/3 Object Language.
Any blank card or binary card on BI that contains only zeros
is ignored. The form of the command is

1#LADD directory [, identification] , library

where

directory specifies a permanent file directory.
It must be one of the following codes:

Code Library

SL System

UL User

88 Control Command Repertoire

identification is the program name located in the
start module item of the object module on BI.
Within a permanent area (SL or UL), each object
module must have a unique "identification". If
the identification parameter is omitted, all object
modules on BI will be added to the library up to,
but not including, the file mark or EOD on BI.

library specifies the target library. It must be one
of the following codes:

Code Library

B Basic Library (single-precision
math library routines)

E Extended Library (extended-
precision math library routines)

M Main Library (nonmath library
routines)

LREPLACE The !#LREPLACE (Library Replace) command
replaces an object module of the same identification in the
designated library. The object module is read from BI and
checked for sequence checksum errors. The object module
on BI must be in Standard Sigma 2/3 Object Language. Any
blank card or binary card (on BI) that contains only zeros
is ignored. The form of the command is

1#LREPLACE directory, identification, library

where
directory specifies a permanent file directory. It
must be one of the following:
Code Library
St System
uL User
identification is the program name located in the

start module item of the object module on BI.
The object module on BI replaces the module in
the library having the same identification.

library specifies the target library. It must be
one of the following codes:

Code Library

B Basic
E Extended
M Main

LDELETE The !#LDELETE (Library Delete) command
deletes an object module from the designated library. The
form of the command is

I$LDELETE directory, identification, library

where

directory specifies a permanent file directory. It
must be one of the following:

Code Library

SL System
UL User

identification is the program name of the object
module to be deleted.

library specifies the target library. It must be
one of the following codes:

Code Library

B Basic
E Extended
M Main

LCOPY The 1 #LCOPY (Library Copy) command copies
an object module from the designated library onto the BO
device. The form of the command is

1#LCOPY directory, identification

where
directory specifies a permanent file directory. It
must be one of the following:
Code Library
SL System
UL User
identification is the program name (located in the
start module item) of the object module to be
copied onto the BO device.
LSQUEEZE The 1$LSQUEEZE (Library Squeeze) com-

mand will squeeze designated library areas. Unusedspace
is recovered by regenerating the directory files and

squeezing (compacting) the module file. The form of the
command is

1#LSQUEEZE directory

where directory specifies either User Library (UL) or the
System Library (SL).

MAP The 1*MAP command causes the specified direc-
tories to be mapped on LO. For each permanent RAD area,
the beginning and ending RAD addresses for the area are
mapped. For each file, the contents of the directory entry
describing the file are printed. This information includes
name, format, write-protection, foreground task indicator,
beginning address, EOF address, and EOT address for each
file. Maps of library directories include program name,
library designation (Main, Basic, or Extended), and DEFs
and REFs for each object module. The form of the com-
mand is

1#MAP [direcfory]] [,directory2]. .. [,direcfory6]

where

directory, specifies a file directory. It must be a
currently defined area. As many as eight direc-
tories may be input.

If no directory parameter is included, all cur-
rently defined directories are mapped.

DumP The !*DUMP command dumps a random-access
file on LO. The file is dumped one granule at a time.
The DUMP Utility Routine (see Chapter 9) may also be used
to dump sequential-access files. DUMP represents each
word as a four-character hexadecimal number. 1t dumps
each granule of the file starting at BOT (if starting address
is not specified) and ending at EQT or after the specified
number of granules has been dumped. The form of the com-
mand is

1#DUMP oplb [, number 1][, number 2]

where

oplb is the operational label or FORTRAN device
unit number (e.g., F:109) of a temporary, check~
point, or permanent RAD file to be dumped.

number 1 is the starting granule address in decimal
or hexadecimal.

Control Command Repertoire 89

number 2 is the number (decimal) of granules to be
dumped. If the number parameter is omitted, the
file is dumped up to EOT.

SAVE The 1#SAVE command saves the contents of the
RAD for subsequent restoration. The image of the desig-
nated permanent area (including both directory and files)
and the RBM bootstrap are written on magnetic tape BO in
a self-reloadable format; the BO output contains a bootstrap
loader followed by the RAD images of the RBM bootstrap
and the designated area. Execution of the bootstrap loader
causes the RAD image to be read into memory and restored
onto the RAD without RBM control; after restoration, the
RBM bootstrap is executed. The BO output can also be re-
stored on the RAD via the #RESTORE command (explained
below). The form of the command is

1#SAVE [direcfory.l] [,direcforyz]. .. [,direcforyé]

where
directory; specifies the permanent RAD area to be
saved. It must be a currently defined area.
If no directory parameter is included, all current
permanent file areas are saved. A request to
save CP or BT is ignored.
RESTORE The #*RESTORE command restores the perman-

ent areas saved via a |#SAVE command. It reads the output
of the 1#*SAVE command from BI and bypasses the bootstrap
loader. The form of the command is

1#RESTORE

SQUEEZE The !*SQUEEZE command compacts the desig-
nated file areas. Unused space is regained by regenerating
the dictionaries and moving files. The form of the com-
mand is

1#SQUEEZE [direcfory]] L directoryz]. .. [,direcforyé]

where

directory; specifies the permanent RAD area to be
compacted. It must be a currently defined area.

If no directory parameter is included, all current

permanent areas are compacted. A request to
squeeze CP or BT is ignored.

90 RAD Editor Error Messages

CLEAR The 1#CLEAR command zeros out the specified
RAD area or file. The form of the command is

1#CLEAR directory [, file]

where

directory specifies a permanent area. It must be a
currently defined area.

file is a file name, within the area specified by
"directory" which is to be cleared. The re-
mainder of the area will be unchanged. If "file"
is omitted, the entire area is cleared. Note
that only one area may be cleared with each
I#CLEAR command.

TRACKS The #TRACKS command will update the list of
bad tracks for each RAD or disk pack device. This

list resides in the first sector of each area. The source
for this update is the existing Alternate Track Pool,
which is modified via the BT key-in. The form of the
command is

1 #TRACKS

END The I#END command is used exactly like the 1EOD
command; that is, it transfers control from the RAD Editor
to the Monitor. The form of the command is

1#END

This command should be used in place of EOD whenever
multistep job stacks are to be prestored on a file. The
Utility COPY routine will not interpret this command as
an EOF.

RAD EDITOR MESSAGES

The RAD Editor program outputs error messages on OC and
DO. If OC and DO are assigned to the same device,
duplication of messages on DO is suppressed. If an operator
response is required, the message

IBEGIN WAIT

is written on OC and DO. The operator activates the con-
sole interrupt and keys in either of the following codes.

Code Meaning

S Continve.

X Abort RAD Editor and return control to RBM.

To abort, the RAD Editor calls the Background Abort The error messages output by the RAD Editor and their mean-

routine, M:ABORT. If the RAD Editor aborts because of ings are given in Table 19. The messages in Table 20 are
an irrecoverable input/output error, the code in the abort written on the keyboard/printer during RAD restoration via
message is the operation label of the device in error. If the bootstrap loader produced by SAVE. Any error output
the abort is due to an X response by the operator or some causes the computer to go into a wait state after writing the
error condition, the code is ‘RE'. appropriate message.

Table 19. RAD Editor Error Messages

Message

Meaning

AREA OVERFLOW

Allocation of the amount of storage indicated by the file parameter on the 1#ADD command
would cause the permanent area indicated by the directory parameter to overflow. RAD
Editor reads the next command from CC.

ASSIGN ERR The RAD Editor was unable to assign an operational label to a file because the number of
available RAD or disk pack device-file numbers is insufficient. RAD Editor aborts.

BOT oplb An unexpected beginning-of-tape has been encountered on the device having the opera-
tional label oplb. RAD Editor aborts.

CKSM ERR The last record in the object module being read from BI has a checksum error. If the job

is ATTENDed, operator response is solicited; an operator response of S causes the Editor
to read the next record from BI. RAD Editor aborts.

CORE OVERFLOW

The last command cannot be processed for lack of background space. The RAD Editor
aborts.

DUP IDENT

The last object module read from BI cannot be added to the library with a #LADD
command because it is already in the library. RAD Editor aborts.

DUPLICATE NAME

An attempt was made to add a file whose name already exists for this area. The RAD
Editor reads the next command from CC.

EDIT ERR

Data on the RAD or disk pack has been rendered invalid. RAD Editor aborts.

EOF oplb

An unexpected end-of-file was encountered on the device having the operational label
oplb. RAD Editor aborts.

EOF READ FILE

An EOF has been encountered on the input file. Copying will continue until EOT on
the Read file or EOT on the Write file is encountered.

EOT oplb

An unexpected end-of-tape was encountered on the device having the operational label
oplb. RAD Editor aborts.

EOT WRITE FILE

An unexpected EOT occurred on the file currently receiving data. This is a warning to
the user that the output file is smaller than the input file (as in |#FCOPY) but that the
data already written is correct. The RAD Editor reads the next command from CC.

RAD Editor Error Messages 91

Table 19. RAD Editor Error Messages (cont.)

Message Meaning

ERR 1/O oplb A calling sequence error occurred for input/output on the device having the operational
label oplb. RAD Editor aborts.

FILE OFLO A file in the library area has overflowed during execution of a !#LADD command. If
operator response is S, the next command is read.

ILLEG BIN An itlegal binary record (first byte not X'FF' or X'9F') has been read with an object
module on BI. RAD Editor aborts.

INV CTRL Control command is invalid. It cannot be recognized by RAD Editor or has incorrect

syntax. If operator response is S, the next command is read.

INV 1/O OP oplb

An invalid input/output operation was attempted on the device having the operational
label oplb. RAD Editor aborts.

LENGTH ERR oplb

A record of incorrect length was read from or written on the device having the operational
label oplb. RAD Editor aborts.

LOAD ERR

The RAD Editor overlay cannot be loaded. RAD Editor aborts.

NO BLOCK oplb

No blocking buffer is available for the file assigned to the operational label oplb.
RAD Editor aborts.

NO IDENT

The object module on Bl does not have the same "identification™ in the start module
item as indicated on the 1#LADD command, the identification in start module item is
blank, or there is no object module on Bl. RAD Editor aborts.

NONEXISTENT FILE

An attempt was made to delete a file whose name does not exist in the specified area.
The RAD Editor reads the next command from CC.

PARAM ERR

Control command has a parameter error. A parameter has incorrect content, has been
omitted, or is not consistent with the other parameters. A parameter error also occurs for
duplicate Editor commands; that is, when an already-existing file is created via the 1#ADD
command or when a nonexisting file is deleted via the ! #DELETE command. If operator
response is S, the next command is read.

RE ERR

RAD could not be restored completely because either Bl input is out of sequence, or perma-
nent RAD areas in the Master Directory do not agree with Bl input. RAD Editor aborts.

SEQ ERR

The last record in the object module being read from BI has a sequence error. If the job
is attended, an operator response of S causes the Editor to read the next record from BI.
If the job is not attended, RAD Editor aborts.

SZ ERR

The object module on BI cannot be placed in the library because it has more than 61 ex-
ternal definitions and references. RAD Editor aborts.

92

RAD Editor Error Messages

Table 19. RAD Editor Error Messages (cont.)

Message

Meaning

UNPROTECT RAD

The RAD or disk pack is write-protected. RAD Editor continues to attempt writing. The
operator should interrupt and key in SY, reset the appropriate RAD protection switches,
or interrupt and key in X to abort, whichever is appropriate.

UNRECOVER 1/O oplb

An irrecoverable I/O error occurred on the device assigned to the operational label
oplb. RAD Editor aborts.

WRITE PRO oplb

The magnetic tape assigned to the operational label oplb is write-protected. RAD Editor
aborts.

Table 20. RAD Restoration Messages

Message

Meaning

CHCK WRITE ERR

A check write error occurred (that is, data recorded on the RAD or disk pack could not
be verified).

CHECKSUM ERR

The last record image read has a checksum error.

RAD WRITE PRO

The RAD or disk pack is write-protected.

READ ERR

The last record being read had a read error.

RESTORED VXX

RBM version XX has been restored on the RAD.

SEQUENCE ERR

The record images for restoration are out of sequence.

RAD Editor Error Messages

93

9. UTILITY

INTRODUCTION

The Utility program operates in the background under the
Real-Time Batch Monitor, It contains routines that:

e Copy variable-length binary or EBCDIC records from
one medium to another (Copy).

o Dump records onto an output device in either hexa-
decimal or EBCDIC format (Dump').

e Generate or update files that contain Standard Sigma
Object Language modules (Object Module Editor).

e Generate or update symbolic files {(paper or magnetic)
that contain source data (Record Editorft),

e Edit card images by sequence number (Sequence Editor).

Routines in the Utility program are device-independent,
Utility handles any blocked or unblocked, sequential-access
RAD file. Use of a sequential-access RAD file is similar to
that of a magnetic tape, as it has a beginning-of-tape, an
end-of-file (if one has been written), and an end-of-tape.
Note, however, that a sequential-access RAD file cannot
be forward-spaced or backspaced over more than one file
mark. A rewound sequential-access RAD file is positioned
at beginning~of-tape. For both blocked and unblocked
files, a record skip is a logical record skip.

UTILITY PROGRAM ORGANIZATION

The Utility program consists of two major sections: the Util-
ity Program Control routine (always resident when the Utility
program is operating), and the currently operating Utility
subroutine. The Utility Program Control routine contains
four interdependent elements:

1. The Program Executive, which initializes the program
(upon entry from RBM), interprets the IUTILITY con~
trol command (explained in "Calling Utility"), exer-
cises control over the flow of control commands, handles
normal and abort exits to the Monitor, and performs
all 1/O checking for the Utility program.

2, The Source Input Interpreter, which reads and scans
Utility control commands for the Control Function Pro-
cessor and the current Utility subroutine.

3. The Control Function Processor, which executes con-
trol function commands common toall Utility subroutines,

fDump is known as Paper Tape Dump in the BCM system.

M Record Editor is known as Paper Tape Editor in the BCM
system, g

94 Utility

4. The Operator Communication routine, which outputs
messages to OC and DO andreceiveskey-in responses.

UTILITY EXECUTIVE PROGRAM

When RBM reads a IUTILTY control command control is
transferred to the ProgramExecutiveroutine., The IUTILITY
control command is then scanned for parameters. If the

name parameter is omitted (see "Calling Utility" below),
it is assumed that only the Control Function Processor will

be used. Utility control commands are read from the source
input device (SI).

If a specific Utility subroutine is requested, the Program
Executive verifies that the subroutine is in core storage; if
nof, an error message is written and an exit to RBM is taken,
terminating the background operation. If the subroutine is
present, initialization of tables and flags occurs.

 The Program Executive then transfers control to the requested

Utility subroutine. The Utility subroutine uses the Source
Input Interpreter to read all commands, and uses the Control
Function Processor to execute control functions. All other
control commands are interpreted and executed by the Uti-
lity subroutine itself.

SOURCE INPUT INTERPRETER

The Source Input Interpreter, which is called by the Program
Executive routine, processes all control commands that are
read by the Utility program. Utility control commands are
input from the SI device and listed on the DO device as
they are interpreted.

Upon reading a command, the Source Input Interpreter de-

termines whether the command is valid. If the syntax for a

command is invalid, the following message is written on OC
and DO:

INV CTL
HUKEYIN

The operator response, either an S to continue or an X to
abort, determines whether or not the Utility program
continues.

If the response is S, the Source Input Interpreter reads the
next control command from SI. If the command is valid, it
may be interpreted and executed either by the Utility sub-
routine or by the Control Function Processor.

CONTROL FUNCTION PROCESSOR

The Control Function Processor interprets and executes com-
mands that are common to all Utility subroutines. If any of

the control commands interpreted and executed by the
Control Function Processor contains an invalid operational
label, the following message is output:

INV OPLB
TUKEYIN

The operator response, either an S to continue or an X to
abort, determines whether or not the Utility program
continues,

OPERATOR COMMUNICATION ROUTINE

All messages to the operator are written on the OC device
by the Operator Communication routine.

If a response is required from the operator, the Operator
Communication routine types the following message:

TUKEYIN

The operator then keys in either an S to continue, or an X
to abort,

If the response is S, a return is made to the calling routine.
If the operator keys in an invalid response (not S or X), the
following message is written on OC and DO.

KEY ERR
ITUKEYIN

The operator then types in the correct response.

INPUT/OUTPUT ERROR MESSAGES

The Program Control routine performs all input/output
checking for the Utility program. Messages regarding input/
output errors are written on both the OC and DO devices.

CONTROL ROUTINE OPERATIONAL LABELS

Four operational labels are reserved for the Program Control
routine. Their use is restricted to the functions below; they
may not be used in place of the labels required by the vari-
ous Utility subroutines explained later.

Label Explanation

SI Device for RBM control command input, Utitity
program control commands, and various modifica-
tion source inputs.

DO Device for listing of control commands (as they
are interpreted), messages, error conditions, op-
eratfor responses, etc, DO provides a permanent
log of the control command flow. This is the only
operational label for the Program Control routine
that can be assigned to device-file number 0

Label Explanation

DO (i.e., suppressed). If OC and DO are assigned
(cont.) to the same device, duplication of messages is

suppressed.

oC Device for messages to the operator, or key=in re-
sponses from the operator (always via the keyboard/
printer).

X5 Temporary RAD file used for prestoring commands

read from SI.

Utility functions are generally executed dynamically; that
is, control commands are interpreted and executed as they
are read. However, when several operational labels are
assigned to the same device as SI, it is impractical to exe-
cute dynamically. In this case, commands must be pre-
stored to avoid confusion with data from that device. This
decision to prestore is made by the Utility program with one
exception: when the IUTILITY command has no name pa-
rameter, the !*PRESTORE control command allows the user
the option of prestoring SI input until an EOD card image
is encountered. For RBM Utilities, prestored commands are
written on a temporary RAD file (using operational label X5)
and read from the RAD for interpretation and execution.

CALLING UTILITY

The Utility program is requested via a [UTILITY control com~
mand, which causes the root segment of the Utility program
to be loaded into core memory from the RAD. The !UTILITY

control command has the format

IUTILTY [name][, parameter]

where
name is the name of a Utility routine or may be
omitted. It may be any of the following:

COPY {Copy)
DUMP (Dump)
OMEDIT (Object Module Editor)
RECEDIT (Record Editor)
SEQEDIT (Sequence Editor)

parameter represents the series of optional param-

eters that are unique to each Utility routine. Pa-
rameters are fully explained in the description of
the individual routines.

When RBM reads a IUTILITY command, it loads the Program
Control routine (root segment) from the RAD and transfers
control to the Program Executive which controls the operation

Calling Utility 95

of the Utility program. The Executive first scans the
IUTILITY control command parameters. If the name pa-
rameter is omitted, the Executive assumes that the control
commands that follow use the Control Function Processor
only. 1If a specific Utility routine is referenced with the
name parameter, the Program Executive checks the name
for validity. If the name is invalid, the message

UT NT RES

(Utility not resident) is written on OC and DO and the
Utility program aborts, If the name is valid, the overlay
segment containing the Utility routine is loaded from the
RAD, flags are initialized, and control is transferred to the
named routine.

When the Executive or Program Control routine encounters
an 'EOD card image from Sl, it terminates processing. The
form of the IEOD command is

IEOD

This causes the Utility program to transfer control back to
RBM.

CONTROL COMMAND FORMAT

All Utility program control commands are input from SI and
are listed on the DO device as they are interpreted. The
general format is

I*mnemonic specification

where
! identifies the record as a control command.
* indicates that the control command is unique to
the Utility program,
mnemonic is the code name of a Utility command
and begins immediately following the !* characters.
specification is a series of parameters unique to

the specific command. The conventions used in
specifying parameters are (1) a string of up to five
decimal digits having a value less than 32, 768
denotes a decimal integer and (2) a string con-
taining more than five characters is always assumed
to be EBCDIC, regardless of content.

One or more blanks separate the mnemonic and specifica-
tion fields, but no blanks may be embedded within a field.
A control command is terminated by the first blank ofter the
specification field; or, if the specification field is absent
and a command follows the mnemonic field, the command is
terminated by a period. No control command record may
contain more than 80 characters. The first two characters

96 Control Command Format/Control Function Commands

of the mnemonic portion of the command are sufficient to
define a control command; the remaining characters may be
omitted, since they are ignored when present.

CONTROL FUNCTION COMMANDS

The Control Function Processor interprets and executes con-
trol commands that are common to all Utility subroutines.
These control function commands are given below. Unless
otherwise noted, "oplb" is the operational label of the de-
vice, "number" is the number of file marks or records to
skip (if omitted, the number is assumed to be 1), and "de-
vice" is the device type and physical device number.

FBACK The !*FBACK command backspaces a magnetic
tape over a specified number of file marks or a sequential-
access RAD file to beginning-of-tape (BOT). The form of
the command is

1 *FBACK oplb[, number]

FSKIP The 1*FSKIP command spaces a magnetic tape
forward over a specified number of file marks or asequential -
access RAD file over its end-of-file. The form of the com-
mand is

V*FSKIP oplb[, number]

MESSAGE The 1*MESSAGE command writes messages to
the operator on the OC and the DO devices. The form of
the command is

I*MESSAGE message

where message is any EBCDIC character string up to a full
card image.

The format of the output is
1*MESSAGE message
PAUSE The *PAUSE command causes a message to be

written on the OC and DO device followed by a wait for
the operator's response. The form of the command is

*PAUSE message

where message is any EBCDIC character string up to a full
card image.

The format of the output is

1*PAUSE message
ITUKEYIN

PRESTORE The !*PRESTORE command causes all control
commands to be read from the SI device, but not to be in-
terpreted or executed until an IEOD is read. The prestored
commands are written on a temporary RAD file (using opera-
tional label X5) and are read sequentially from the RAD.
(The prestore mode is set automatically when a name param-
eter appears on the !UTILITY command and one or more
operational labels have been assigned to the same device

as SI.) The I*PRESTORE control command must immediately
follow the IUTILITY control command and must precede any
other control commands for the Utility program. The form
of the command is

I *PRESTORE

REWIND The I*REWIND command causes the specified
magnetic tape or sequential-access RAD file to be rewound.
The form of the command is

I*REWIND oplb

RBACK The *RBACK command backspaces a magnetic
tape or sequential-access RAD file over a specified number
of records. The form of the command is

1*RBACK oplb|, number]

If oplb is assigned to a blocked sequential~access RAD file,
the number parameter is the number of logical records to be
skipped.

RSKIP The !*RSKIP command spaces forward the indi-
cated magnetic tape or sequential-access RAD file over the
specified number of records. The form of the command is

1*SKIP oplb [, number]

If oplb is assigned to a blocked sequential-access RAD file,
the number parameter is the number of logical records to
skip.

* UNLOAD The *UNLOAD command unloads a magnetic
tape or closes a sequential-access RAD file. The form of
the command is

I*UNLOAD oplb

END The !*END command is treated exactly like an
IEOD; that is, transfers control from Utility fo the Monitor,
This command should be used in place of IEOD whenever
multiactivity job stacks are to be prestored on a RAD file,

This command will not be interpreted as an EOF when read
from UL, The form of the command is

K*END

WEOF The 1*WEOF command writes a file mark, EOD,
or end-of-file pointer if appropriate to the device. The
form of the command is

(l *WEOF oplb

ASSIGN The 1*ASSIGN command allows a Utility user
to assign any operational label to any other background
operational label, device-file number, or RAD file. The
form of the command is

=) oplb
1*ASSIGN oplb[] DFEN
,] file,area

where
DFN is a device-file number.
file is a RAD file name.

area is the RAD area within which the RAD file is
defined.

COPY ROUTINE

COPY provides the ability to copy variable-length binary
or EBCDIC records from cards, paper tape, magnetic tape,
keyboard/printer, and sequential-access RAD file (blocked,
unblocked, or compressed) to cards, paper tape, magnetic
tape, line printer, keyboard/printer, and sequential-access
RAD file (blocked, unblocked, or compressed). Using con-
trol functions of the Control Function Processor, records and
files can be skipped., Output generated by the COPY rou-
tine can be verified. If the binary mode is requested for
either copying or verifying, file marks are recognized for

a magnetic tape or sequential-access RAD file.

Since COPY uses RBM routines M:READ and M:WRITE for
all reading and writing, files copied with the COPY routine
will be treated according to the default conventions of the
FORM, size, and BIN parameters of the !|*COPY command.
Deviation from inherent conventions is accomplished via
FORM, size, and BIN parameter options.

For records being copied to the card punch, records con-
taining a first byte of X'1C, X'3C', X'9F', X'BF', X'DF’,
X'FF', X'00', or X'78' are always punched in the binary
mode; all other records are punched in EBCDIC. For all
other devices, the distinction between binary and EBCDIC
modes is meaningless because records are copied directly

COPY Routine 97

without translation. Therefore, attempting to copy binary
data to an EBCDIC device will result in meaningless output.

For paper tape, if BIN and size are nofspecified, the length
of each binary record (first byte of X'1C', X'3C', X'9F',
X'BF', X'DF', X'FF', X'00', or X'78') is always 120 bytes.
When M:READ reads EBCDIC records from paper tape, it
transmits only the number of bytes specified by the calling
sequence to memory. Ordinarily, the COPY routine assumes
that paper tape EBCDIC records have a byte count of 120,
The BIN control card allows the user tooverride the standard
count,

By assigning the X4 oplb to a RAD file or paper tape device
before the !*OPLBS command is read, records copied from
Ul are adjusted to a 80~ or 120-byte length, depending upon
the contents of the first byte,

When copying or verifying a 9-track magnetic tape to a
7~-track magnetic tape, Ul and X4 should be assigned to the
9T magnetic tape device,

If a record copied to the line printer or keyboard/printer
contains more than 132 characters, only the first 132 are
printed. Normally, the first character of the record is
printed and single spacing is forced. Therefore, even if the
first character is intended for format control, it will be
printed as the first character of the print line in the normal
mode. If the format option is specified, the first character
is interpreted as a format control character and is not
printed.

The BIN option should only be used to copy nonstandard
binary records. Since no editing is done when a binary
read operation is specified, NL, EOM, and £ are not inter-
preted as editing characters. All records are copied on a
byte-for-byte basis (including leading and trailing blanks).
EOD is not recognized as a file mark. Therefore, a request
to copy/verify one or more files causes input to terminate
only when the input device goes into manual mode. A re-~
quest to copy/verify one or more times (when the input de-
vice is magnetic tape) is processed normally, since file
marks are recognized.

COPY OPERATIONAL LABELS

The following operational labels are used by the COPY
routine in addition to the Utility subsystem operational
labels:

Label Device
Ul Input device
X4 Verify device

Other operational labels may be used by COPY (at the op-
tion of the user) to specify the input and output devices for
verifying and copying, respectively.

98 COPY Routine

COPY OPERATING CHARACTERISTICS

The COPY routine checks whether input/output operational
labels are assigned to the same physical device. If so, all
control commands are read from the SI device and stored in
memory prior to interpretation of the control commands to
begin copying. When the SI and any input or output opera-
tional labels are assigned to the same physical device, the
message

LD INPUT

HUKEYIN

is written on the OC and DO device, and the Operator
Communication routine waits for an operafor response. The
operator should load the input at this point and key in an
S response to initiate the actual copy procedure.

If the operational labels are not assigned to the same physi-
cal devices, interpretation of control commands takes place
as they are read from SI, and copying begins immediately
without any message being output on the OC device.

CALLING COPY

The COPY routine is requested with the control command

IUTILITY COPY/(, CORE]

where CORE specifies that, for the first !*COPY or
I*VERIFY command, the records from the input device are
stored in core in addition to being copied or verified. For
subsequent ! *COPY or !*VERIFY commands, these records
in core, rather than those on the input device, are used as
the input source.

After interpretation of the !UTILITY control command, con-
trol is transferred to the COPY routine which interprets the
control commands listed below,

COPY CONTROL COMMANDS

OPLBS The *OPLBS command identifies the operational
labels of output devices to be used in COPY requests and
input for comparision for VERIFY requests, and must follow
the IUTILITY command. The input for COPY operations is
read from UL. For VERIFY operations, X4 is read, Ul may
not be used as a parameter for COPY operations; nor are
Ul and X4 allowed as parameters for VERIFY operations,
An I*OPLBS command should follow !*ASSIGN commands
that change the device type of Ul or X4. Operational

labels may be assigned to any device except a random-access
RAD file. Assignments remain ineffect until anew !*OPLBS
command is read. The form of the command is

1*OPLBS oplb, [, oplb,, ...][,oplbn]

where oplb; is the optional label for an output device for
subsequent | *COPY commands, or an input device for sub-
sequent !*VERIFY control commands. The oplb parameter
may not be assigned to device-file number 0 (n <8).

CoPY The *COPY command causes records from the
input device (UI) to be copied on the output device (speci-
fied in the !*OPLBS command) until the requested number
of 1EODs or file marks has been read and copied, or until
the specified number of records has been copied. The form
of the command is

1*COPY type[, number] [, FORM] [, size][, BIN]

where
type is R if the number parameter refers to records,
or F if the number parameter refers to files.
number has different meanings, depending upon

the type parameter that precedes it. If the type
parameter is R, "number" is the number of records
to be copied, but refers to logical records for a
blocked, sequential-access file. If "type" is F,
"number" is the number of files to be copied, or
is ALL, indicating that all files should be copied
until two consecutive EOD images or file marks
are copied. If "type" is F and any of the input/
output devices is a sequential-access RAD file,
"number" is 1 or it is omitted. If the number pa-
rameter is omitted, one record or file is copied.

FORM applies only if data is being copied onto
the line printer or keyboard/printer. If the FORM
parameter is omitted, single spacingof printed
output is the format. 1f FORM is used, the first
character of each record is used for format control
and is not printed.

size specifies the maximum number of bytesin each
record. If data is being copied to or from a
sequential-access RAD file, "size" is the maximum
logical record size and must be an even number.
If "size" is omitted, all records are read and written
in the standard record size (120 bytes). An IEOD
card will not be recognized by M:WRITE if an odd
byte count is specified or if a byte count of less
than four bytes is specified.

BIN if omitted, mode (BIN or EBCDIC) is determined
according to byte 1 of the record. If present, all
copying is done in binary, either with the count
specified in "size" or the standard record size

(120 bytes) by default.

VERIFY The '*VERIFY command requests comparison of
data on the X4 device with data in core (CORE opfion) or
with data from devices specified in the !*OPLBS control
command, The form of the command is

I*VERIFY type[, number] [,size] [, BIN]

The parameters are defined as for the !*COPY control
command.

Note: Ul must not be used on an ! *OPLB command with
VERIFY.,

Before the !*VERIFY control command isissued, itisassumed
that all files have been repositioned, if necessary, by use
of I*REWIND and other file positioning control commands
(described in "Control Function Commands"). The entire
verification process is completed when the number of files
or records for verification has been compared.

DUMP ROUTINE

The DUMP routine is used to dump records or files onto an
output device in either hexadecimal or EBCDIC format,

DUMP uses M:READ and M:WRITE for all input/output, If
no mode or the EBCDIC mode is specified for dumping, all
records are dumpedaccording to the contents of the first byte
of each record. Any record having a first byte of X'1C',
X'3C', X'9F', X'BF', X'DF', X'FF, X'00', or X'78' is
assumed to be a binary record containing 120 bytes, and is
dumped with each data word being represented in EBCDIC
as a 4-digit hexadecimal number. Any record that does not
contain one of these characters in ifs first byte is assumed
to be in EBCDIC and is dumped as such,

The user has the option to specify the byte count for paper
tape record input, since M:READ pads all EBCDIC records
with trailing blanks so that they appear to be fixed length
in memory.

The BIN option for dumping should be used to dump non-
standard binary records. The option causes all records that
are to be dumped to be read in binary and dumped with each
data word represented in EBCDIC as a four~-character hexa-
decimal number. Since no editing is done when a binary
read is specified, NL, EOM, and ¢ are not interpreted as
editing characters. EOD is recognized as a file mark.

DUMP Routine 99

DUMP OPERATIONAL LABELS

The DUMP routine uses the following operational labels:

Label Explanation

S1 Device for input commands.

LO Output device for dumping.

Ul Input device for dumping, unless some other

input device is specified.

DUMP OPERATING CHARACTERISTICS

If both SI and DUMP inputare assigned to the same device,
all of the control commands on the Sl device are read and
stored in memory before interpretation of the commands and
dumping of the input tape begins. When this occurs, the
message

LD INPUT Ul, ddnn
1IUKEYIN

is written on the OC and DO device. The operator mounts
the input tape and keys in an S response to continue.

If SI and the tape device to be dumped are not assigned to
the same device, no message is written and control com-

mands are interpreted as they are read. The DUMP control
commands are then listed on DO and dumping is performed.

CALLING DUMP

The DUMP routine is requested with the control command

IUTILITY DUMP[, oplb]

where oplb is the operational label of the input devoce, If
oplb is omitted, the operational label is assumed to be Ul.

DUMP CONTROL COMMANDS

DUMP The 1*DUMP command causes records to be read
from Ul and written on the LO device in the specified mode
until an IEOD or file mark is read, or the specified number
of records has been read. The form of the command is

1*DUMP[number] [, mode] [, size]

where

number is a decimal integer. Only the specified
number of records is dumped. If "number" is

omitted, the fileis dumped to an EOF or file mark.

100 Object Module Editor Routine

If "number™ is ALL, the dump is performed to
double file marks or IEODs. If the dump "input"
(UI) is assigned to a sequential-access RAD file,
the number parameter must be 1.

mode indicates that all records on Ul, regardless
of the content of the first byte of each record, are
written on the LO device in the mode specified.
"Mode" is HEX for hexadecimal and EBCDIC for
EBCDIC. If omitted, EBCDIC is assumed.

size specifies the maximum number of bytes to be
read in each record. If the dump "input" is a
sequential-access RAD file, the size parameter
must be an even number. Forablocked sequential-
access file, "size" is the maximum logical record
size, If it isomitted, thestandard record size isused.

OBJECT MODULE EDITOR ROUTINE

The Object Module Editor is designed to maintain files con-
taining sets of Standard Sigma 2/3 Object Language mod-
ules. If generates or updates files by inserting and deleting
object modules according to the program name in the start
module item for each module. For each output file written,
a list of module names is printed in the order of their
appearance.

Object Module Editor is also used to list files containing
object modules and to verify that the input object records
contain no checksum or sequence errors,

A binary object module is defined as a sequence of binary
records in Sigma 2/3 Standard Binary format, each of which
begins with a nonblank name item and terminates with a
record whose first byte is X'9F' (END card) indicating that
the record contains an end item.

A set consists of one or more object modules and is termi-
nated by a file mark or !EOD. A tape may contain one or
more sets and is terminated by double file marks or EODs,
Only one set of object modules can be contained in a
sequential-access RAD file.

Note that the Object Module Editor routine does not main-
tain the object modules in the System Library and User
Library areas on the RAD. These permanent areas are main-
tained via the RAD Editor (see Chapter 8).

OBJECT MODULE EDITOR OPERATIONAL LABELS

The Object Module Editor uses the following operational
labels:

Label Explanation

BI Device from which binary object modules
are to be inserted.

LO Device for listing either Ul or UO object
module names.

Labe! Explanation
Ul Input device.
uo Output device.

OBJECT MODULE EDITOR OPERATING CHARACTERISTICS

Object Module Editor operates in two modes: list and
modify.

In the list mode,-only Ul is read. The names of the object
modules are printed on LO, and the checksum and sequence
for each record are verified. After interpreting the !*LIST
control command, the Editor checks if any two of SI, BI,

and Ul are assigned fo the same device. If so, the message

LD LIST

TTUKEYIN

is written on OC. The operator responds by preparing Ul
and keying in an S response. Listing of the modules
proceeds.

If no two of the labels SI, BI, or Ul are assigned to the
same device, control commands on SI are interprefed as
they are read and are written on DO. If the Ul device is
assigned fo a sequential-access RAD file, the Object Mod-

ule Editor leaves the list mode after reading the end-of-file,

In the modify mode, any modules to be inserted are read
from the Bl device and written on UO, as indicated by the
SI control commands. If there are input files to be updated,
they are read from Ul. The names of all object modules
written on UO are listed on LO. The object modules on
BI must be in the same order in which they are to be in-

serted on UO.

The Object Module Editor operates in the "prestore" mode
(reading and storing commands before interpreting) when
the conditions shown below occur; otherwise, the Editor
operates dynamically.

Operational Labels

Assigned to Same Device Prestored Data

s1, BI S
s1, Ul s1
BI, UI BI
s1, BI, Ul s1, BI

After entering the modify mode, the Object Module Editor
operates as follows:

If any two of the operational labels SI, BI, and Ul are as-
signed to the same device, Object Module Editor follows
the steps below:

1. Interpretation of control commands begins. If any
object modules are to be inserted, and if SI and Bl are
assigned to the same device, the SI device is read
until an IEOD is encountered and the message

LD INSERTS
UKEYIN

is written on OC and DO. The operator loads the mod-
ules to be inserted on the BI device and keys in an S
response. If SI and Blare assigned todifferent devices,
no message is written. The Editor then reads in all the
modules on BI until either an IEOD or any other record
with a first byte different from X'FF' or X'9F' is read
from Bl. Blank records are ignored.

2. 1If there are input files to be updated, the message
LD INPUT
HUKEYIN

is written on OC and DO. The operator must prepare
Ul and key in an S response.

3. The mode modification control commands are inter=
preted, causing updating or generation to proceed.
Each control command is listed on DOas it isinferpreted.

If no two of the operational labels SI, Bl, and Ul are as-
signed to the same device, control commands from SI are
read and interpreted dynamically. Records are read from

BI and Ul and written on UO in response to each mode mod-
ification control command. Every control command read
from Sl is listed on DO.

Object Module Editor uses M:READ and M:WRITE to perform
all input/output. Each object module is identified by the
program name stored in the start module item, No modules
with blank names are even written on the UO tape.

CALLING OBJECT MODULE EDITOR

The Object Module Editor is requested with the control
command

IUTILITY OMEDIT

Object Module Editor Routine 101

After interpretation of the IUTILITY control command,
control is transferred to the Object Module Editor routine.
The control command and options available to OMEDIT are
described below,

Object Module Editor begins reading control commands
until an 'EOD or an !*END is read, which terminates
the ST input.

OBJECT MODULE EDITOR CONTROL COMMANDS

LIST The !*LIST command causes the Editor to enter the
list mode. The names of the object modules on Ul are read
and listed on LO. Any checksum errors detected cause
error messages to be written on LO, but listing continues.
If the record is an !EQOD, it is listed. If two consecutive
IEODs are encountered, the Editor leaves the list mode and
the next control command is interpreted. The form of the
command is

I*LIST

MODIFY The *MODIFY command indicates that ob-
ject modules are to be output on the UO device and causes
the Editor to enter the modify mode. The modify mode ter-
minates when an 1EOD or !*LIST control command is inter-
preted from S1, or two !EODs from Bl or Ul. The form of
the command is

1*MODIFY [{GEN }]

INSERT

where

GEN is an optional parameter indicating that ob-
ject modules are to be selectively input from BI
and that files are to be generated on UO. Ul is
not read. The control command 1*MODIFY GEN
may be followed only by !*INSERT control com-
mands (GEN implies *INSERT) used to define the
elements to be selectively copied from Bl to UO.
No !*DELETE control commands may be used in
the GEN mode.

INSERT must be specified if insertions from Bl are
to be read. 1f Bl and Ul are assigned to the same
physical device, the complete Bl file (up to an
IEOD) will be prestored. Modules can be selected
from Bl by names on the I*INSERT control com-
mands. The inserts must be in proper order. This
command is used to update (input both !*INSERT
and !*DELETE commands) Ul and to write UO.

Note: If INSERT and GEN are omitted from the [*MODIFY
control command, only !*DELETE control commands
may be input.

102 Record Editor Routine

INSERT The I*INSERT command causes an object module
to be inserted and is effective only in the modify mode.
The form of the command is

I*INSERT name, [, name.,]

where
name is the name (up to eight EBCDIC characters)
of the object module to be inserted.
names is the program name (up to eight EBCIDC

characters) of the last module on Ul to be deleted.
If absent, only one module is deleted.

The I*DELETE control command must name modules in the
same order as their occurrence on UI.

RECORD EDITOR ROUTINE

The Record Editor is used for source editing by record num-
ber from any sequential device to any other sequential de-
vice. Record Editor provides the following capabilities:

1. Generates files containing source data.

2. Lists files containing source images in addition fo
associated line numbers.

3. Modifies files containing source images.

RECORD EDITOR OPERATIONAL LABELS

The following operational labels must be assigned in addi-
tion to the standard Utility program operational labels:

Label Explanation

S1 Input device for control commands.

LO Output device for listing source images.
Ul Input device.

uo Output device.

RECORD EDITOR OPERATING CHARACTERISTICS

The Record Editor routine operates in two modes: list and
modify.

In the list mode, the Editor reads source images from Ul and
lists them on the LO device. It associates each image with
a decimal line number, starting with 1.

In the modify mode, the Editor either updates or generates
files on the UO device.

Record Editor uses M:READ and M:WRITE to perform all
input/output. Therefore, all the paper tape editing and
keyboard/printer editing that is standard fo these routines
is performed,

CALLING RECORD EDITOR

The Record Editor is requested with the following control
command

IUTILITY RECEDIT

After interpretation of the IUTILITY control command, con-
trol is transferred to Record Editor, which begins reading
control commands.

RECORD EDITOR CONTROL COMMANDS

A command requesting either the list or modify mode must
immediately follow the !UTILITY command. All other con-
trol commands are interpreted as subcommands under each
mode. If a binary record is read from Ul, the following
message is written on OC and DO:

MODE ERR Ul,device

ITUKEYIN

LIST The I*LIST command (list mode) causes the previous
mode to terminate. The source files are read from Ul and
listed on LO. Each EBCDIC source image is listed along
with an associated line number up to and including the first
IEOD source image or file mark read. After the required
number of files has been listed, another control command

is read from the SI device. Each !*LIST control command
file mark, or IEOD causes the line numbering to restartwith
with 1. The form of the command is

1*LIST [number]

where number indicates the number of files to list. Listing
continues until two consecutive !IEODs are encountered or
the specified number of files is listed. If "number" is omit~
ted, one file is listed. If Ul is assigned to a sequential-
access RAD file, the number parameter must not be greater
than 1.

A I*MODIFY, *END, or !IEOD control command causes
the list mode to terminate.

MODIFY The 1*MODIFY command informs the Record
Editor that files are to be either generated or updated. It

terminates the previous mode and initiates the modify mode.
The form of the command is

1*MODIFY [usT][, GEN]

where

LIST indicates that a listing of records deleted or
inserted will be produced on LO. If LIST is the
only parameter used, the listing will contain the
Ul line numbers (the number deleted or the num-
ber preceding the one inserted). If GEN is also
present, the UO line numbers will be listed.

GEN indicates that records are to be read from SI
(there is no input on UI) and written on UO. If
updating is to be performed (that is, there is input
tobe read from UI), the parameter field is left empty.

The modify mode is terminated whenever a !*LIST,
I*MODIFY, I*END, or IEOD control command is input
from SI. When the modify mode is terminated and GEN is
specified, an IEOD or file mark is written on UO. When
the modify mode is terminated and GEN is not specified,
the remaining source images of the file on Ul (until an EOD
is encountered) are written on UO, followed by an EOD or
file mark.

DELETE The !*DELETE command causes the indicated
record source images to be deleted and is effective only in
the modify mode. The form of the command is

I*DELETE numberl L numberz]

where
number) is the line number of the first (or only)
source image to be deleted.
number) is the line number of the last source image

to be deleted.

INSERT The !'*INSERT command causes record source
images from SI to be added to Ul and written onto UO, and
is effective only in the modify mode. The form of the com-
mand is

I *INSERT number

where number is the line number that the insertions are to
follow. If a line number of 0 (zero) is used, the insertions
will precede the first line.

Every source image on SI following the !*INSERT conirol
command is inserted until a new Record Editor control
command is encountered.

Record Editor Routine 103

CHANGE The *CHANGE command causes the indi cated
source images to be deleted, and the source images fol -
fowing the CHAN GE command to be written on UO. The
command is effective only in the modify mode. The form
of the command is

I*CHANGE number] L number2]

where
number | is the [ine number of the first source
image to be deleted.
numbery is the line number of the last source

image to be deleted. If omitted, only one source
image will be deleted.

Following the I*CHANGE control command, every source
image on Sl is inserted until another Record Editor confrol
command is encountered.

SEQUENCE EDITOR ROUTINE

The Sequence Editor edits EBCDIC card images by sequence
number. It is more flexible than the Record Editor in that
multiple programs or sections of programs may be updated
and sequenced individually within single or multiple files.
It provides greater protection from updating in an incorrect
sequence, or from accidentally updating the wrong pro-
gram. Another feature of the Sequence Editor routine is
that update card images may be inserted without changing
the existing sequence numbers. Thus, update decks may
be cumulative and will reflect the development of a source
program.

The Sequence Editor is primarily intended for installations
where EBCDIC source programs are kept on magnetic tape.
It is somewhat impractical for paper-tape-oriented systems
or systems without a line printer.

Editing is accomplished by designating columns 73
through 80 of a source card image as the "sequence field".
This field consists of two parts, the ident and the sequence
number,

The optional ident is that portion of the sequence field that
uniquely identifies a program or program segment. If de-
fined, the ident begins in column 73 of the card image and
is from one fo six alphanumeric characters in length.,

The required sequence number is that portion of the sequence
field that is sequenced numerically. It consists of from two
through eight decimal characters and ends in column 80 of
the card image. The user can specify the value by which
successive sequence numbers are incremented. In general,
a large sequence increment will allow larger insertions
without affecting the existing sequence numbers.

Together, the ident and sequence number must not total
more than eight characters. Any unused columns will be

104 Sequence Editor Routine

between the ident and the sequence number and will be
ignored by the Sequence Editor.

SEQUENCE EDITOR OPERATIONAL LABELS

The following operational labels are used by the Sequence
Editor routine:

Label Explanation

S1 Update data (includes card images and
control commands).

LO Annotated listing of added and deleted
card images.

Ul Input device.

uo Output device.

Device, above, refers to any permanent storage device such
as magnetic tape, paper tape, or RAD (single sequential
file). Note that LO shouldnot be assigned to the keyboard/
printer, because the sequence number portion of the print-
out is truncated on that device.

SEQUENCE EDITOR OPERATING CHARACTERISTICS

The Sequence Editor performs two separate and distinct
functions: generates files on UO from source images input
on SI, and updates files from Ul onto UO, taking updates
from SI. Only one of these functions can be performed per
call to the Sequence Editor (SEQEDIT).

The file generation (GEN) function is used fo create the
permanent files initially. It is recommended that files be
sequenced as they are generated to avoid an update pass at
a later stage. The user can generate one file (terminated
by an !EOD or an !*END from SI) wherein a single file mark
is written on UO, ormultiple files (terminated by two IEODs
or }*ENDs from SI) wherein two file marks are written onto
UO and UO is backspaced one file.

The update function is used to update Ul by replacing,
deleting, or inserting card images from SI and writing the
updated files onto UO. The files can be resequenced as
they are written. The user can update one file (terminated
by an EOF from Ul) wherein an EOF is written onto UO, or
all files (terminated by logical end-of-tape or two EOFs
from UI) wherein two file marks are written on UO and UO
is backspaced one file, With the "ALL" option, it is not
necessary to update each file, but all files will be copied
onto UO.

Files can be sequenced as they are generated or updated.

Sequencing is a separate operation in that the card images

are sequenced as they are written on UO, Thus, it is pos-

sible to update an existing file by ident and sequence num-
ber while placing a new ident and sequence number on the
updated file.

CALLING SEQUENCE EDITOR

The Sequence Editor is requested via the control command

wnuty SEQEDIT[, GEN][, 1GN][, ALL)

where

GEN indicates that output files are being generated
on the UO device and that there are no input files
to be updated.

IGN indicates that SI sequence errors are to be
ignored if UO is being generated or that Ul se-
quence errors are to be ignored if Ul is being
updated. If IGN is used, no sequence error mes-
sages are printed.

ALL indicates that the GEN function is to continue
until ftwo 1EOD or [*END cards are encountered
from SI, or that the update function is fo continue
until two EOFs are encountered from UI.

The Program Executive transfers control to the Sequence
Editor, which interprets and validates the parameters. If
illegal parameters are input, the Utility program aborts
with a code of UT. If this is an update (the GEN option
was not specified), the following message is output on OC
and DO:

LD INPUT UI, device

HUKEYIN

SEQUENCE EDITOR CONTROL COMMANDS

IDENT The I*IDENT command defines the breakdown

of the sequence field into the ident and the sequence num-
ber. 1t applies to card images from Ul and SI only. If
used, it should precede the update cards to which it applies.
If omitted, the ident field is considered empty and the
sequence number is eight characters in length. The I*IDENT
control command is used whenever it is necessary for the
Sequence Editor to know the size and content of the ident
field (that is, when Ul contains multiprogram files or
single-program files with nondecimal characters in the se~
quence field). It is not to be used when files are being
generated. The form of the command is

I*IDENT [ident][, sequence number]

where

ident is an integer ny (0 < ny < é) that specifies
the number of characters in the ident subset of the
sequence field starting from column 73, If "ident"
is omitted, the ident field does not exist.

sequence number is an integer np (2 <ng < 8) that
specifies the number of characters in the sequence
number subset of the sequence field ending in
column 80. If omitted, sequence number is set
equal to the difference (8 - ident).

The user should note that if a nonzero ident field has been
specified on an ! *IDENT command, the idents on each card
image from Ul must match exactly or resequencing will be
suspended when the first nonmatching ident is encountered.
Hence, if Ul is known to have nonmatching idents (for
example, a file that has never been sequenced or one that
has been updated and contains some blank sequence fields),
a separate sequence operation should be performed (without
a simultaneous update) specifying an empty ident field.

Replacement. The update card itself, rather than a control
command, is used to replace a card image from UL. The
sequence number on the update card must equal the sequence
number on the Ul card image to be replaced. The card image
from Ul and the message "DELETED", followed by the card
image from SI and the message "INSERTED" are output on
LO.

Insertion. The update card itself, rather than a control
command, is used to insert a card image on UO, The se-
quence number on the update card must be between the
sequence number of the two continuous Ul card images where
the update card is to be inserted. The card image from SI
and the message "INSERTED" are output on LO. Cards
without sequence numbers are inserted immediately following
the sequenced card preceding them. Thus, a large block of
card images can be inserted by placing the proper sequence
number on the first card only. The nonsequenced cards will
be written on the output tape without sequence numbers. It
is recommended that the tape be resequenced as it is being
updated if unsequenced cards are inserted.

DELETE The *DELETE command deletes one or more card
images from Ul. Nonsequenced cards can only be deleted
by deleting from the last sequenced card preceding the non~
sequenced card(s) up to and including the next sequenced
card. Deleted card images are listed on LO. The form of
the command is

78 80

I *DELETE [sequence Fie|d2] sequence Field]

where

sequence fields indicates that the images are to be
deleted from the ident and/or sequence number in
sequence field| up to and including the ident and/
or sequence number in sequence fieldz.

sequence field) contains the ident and/or sequence

number of the first or only card image to be de-
leted from UL, This parameter is required.

Sequence Editor Routine 105

SUPPRESS The 1*SUPPRESS command is identical to the
I*DELETE control command except that no deletion card
images are listed on LO. The form of the command is

73 80

i i
T L

1*SUPPRESS [sequence Fieldz] sequence field]

SEQUENCE The *SEQUENCE command is used to
resequence columns 73 through 80 of the card images on
UO. Only one program can be resequenced with each
1*SEQUENCE command. Therefore, resequencing is sus-
pended when either a file mark or a card image with a
sequence number identifying a new program is written on
the output tape. Resequencing is also suspended when
another *SEQUENCE command is executed; therefore,
parts of a program as well as entire programs can be rese~
quenced. The form of the command is

73 80

TISEQUENCE [seq.fieldz],increment seq.field]

where

sequence field) contains the ident and/or sequence
number of the first resequenced card image to be
written on the output tape and does not neces-
sarily have the same fields as defined in the
1 *IDENT command. (The ! *IDENT command de-
fines sequence fields for the input tape and update
data only.) If omitted, resequencing is suspended.

increment is the resequencing increment number.
If omitted, an increment of 10 is used. It is the

responsibility of the user to ensure that the se~
quence number does not get incremented past the
size of the sequence number field. No warning
is issued if this overlap occurs.

sequence field; contains the ident and/or sequence
number from Ul at which the !*SEQUENCE
command becomes effective. If omitted, the
1*SEQUENCE command takes effect with the
next card image to be written on UO.

UTILITY ERROR MESSAGES

Unless otherwise noted, the following definitions apply in
error messages given in Tables 21 through 26:

Code Explanation
oplb Operational label of the device,
device Device type or physical device number.

The operator response to I UKEYIN is

Code Meaning
S Continve
X Abort

When an irrecoverable error occurs, the Utility program
aborts. For an irrecoverable input/output error on OC or
DO, the code in the abort message is the operational label
of the device. For other operational labels, the irrecover-
able input/output message is written. Abort returns, due
either to error or X operator responses, cause UT to appear
in the abort message.

Table 21. 1/O Error Messages

Message Meaning

BOT oplb, device !UKEYIN

An attempt has been made to backspace over the magnetic tape load point
or the beginning-of-tape of a RAD file.

CAL SEQ ERR

The Utility Executive has encountered a calling sequence error on a return
from M:READ/M:WRITE. One reason may be an attempt to copy a record

with an odd byte count onto the RAD (may occur with BCD 7-track tapes).
See M:READ status returns in Chapter 4 of this manual.

EMPTY oplb, device 1 UKEYIN

Manual intervention is required (the device is in the manual mode or no
device is recognized).

EOF oplb, device HUKEYIN

An unexpected tape mark, end-of-file (RAD), or IEOD has been read from
magnetic tape, cards, paper tape, keyboard/printer, or RAD file.

EOT oplb, device HUKEYIN

The end~of-tape mark on a magnetic tape or RAD file has been sensed.

106 Utility Error Messages

Table 21, 1/O Error Messages (cont.)

Message

Meaning

IL RAD SEQ oplb, device HUKEYIN

An operational label was assigned to a random-access RAD file, or an
attempt was made to skip, read, or write more than one RAD file.

INV I/O OP oplb, device !HUKEYIN

An input/output operation is not meaningful for the requested device.

INV OPLB oplb, device HUKEYIN

The operational label is not valid. The "oplb, device" portion of the
message may contdin invalid data if input/output is attempted for an
operational label not recognized by the Monitor.

I/O ERR oplb, device

The input/output calling sequence is in error, incorrect length is
specified, or no input/output is pending for a check operation. The
Utility program aborts.

UNRECOV 1/O oplb, device ! UKEYIN

An irrecoverable input/output error has occurred after the maximum
number or retries has been unsuccessfully attempted.

WRITE PRO oplb, device IUKEYIN

An attempt has been made to write on a write-protected magnetic tape

or RAD file.

Table 22. Control Function Command Error Messages

Message

Meaning

FSKIP Command

DEOF oplb, device ! lUKEYIN

Two consecutive file marks were encountered before the required number
of files had been passed.

EOT oplb, device UKEYIN

The end-of-tape was encountered before the required number of files has
been passed.

1L RAD SEQ oplb, device HUKEYIN

The number parameter is not 1 and "oplb" is assigned to a sequential-
access RAD file, or the oplb parameter is assigned to a random-access

RAD file.

INV OPLB ! TUKEYIN

The operational label identifies an invalid device.

PARAM ERR !IUKEYIN

The oplb parameter is missing, or the number parameter is nonnumeric or
greater than 32, 767.

RSKIP Command

EOF oplb, device IUKEYIN

An IEOD or file mark was encountered before the required number of
records was passed.

EOT oplb, device UKEYIN

An end-of-tape was encountered before the specified number of records
was skipped.

IL RAD SEQ oplb, device IUKEYIN

The oplb parameter is assigned to a random-access RAD file.

INV OPLB TUKEYIN

The oplb parameter identifies an invalid device.

PARAM ERR T!UKEYIN

The oplb parameter is missing, or the number parameter is nonnumeric or
greater than 32, 767.

Utility Error Messages

107

Table 22.

Control Function Command Error Messages (cont.)

Message

Meaning

FBACK Command

BOT oplb, device 11UKEYIN

The beginning-of-tape was encountered before the required number of
files had been passed.

DEOF oplb, device UKEYIN

Two consecutive file marks were encountered before the required number
of files was backspaced.

IL RAD SEQ oplb, device HUKEYIN

The oplb parameter was assigned to a random-access RAD file.

INV OPLB oplb, device HUKEYIN

The operational label identifies an invalid device.

PARAM ERR !UKEYIN

The operational label parameter is missing or contains more than two
characters, or the number parameter is nonnumeric or greater than 32, 767.

RBACK Command

BOT oplb, device !!UKEYIN

The beginning-of-tape was encountered before the requested number of
records had been passed.

EOF oplb, device HUKEYIN

A file mark was encountered before the requested number of records had
been passed.

1L RAD SEQ oplb, device HUKEYIN

The oplb parameter was assigned to a random-access RAD file or a
compressed EBCDIC RAD file.

INV OPLB oplb, device TUKEYIN

The operational label identifies an invalid device.

PARAM ERR ITUKEYIN

The operational label parameter is missing or contains more than two
characters, or the number parameter is nonnumeric or greater than 32, 767.

REWIND Command

IL RAD SEQ oplb, device HUKEYIN

The oplb parameter is assigned to a random-access RAD file.

PARAM ERR TUKEYIN

The oplb parameter contains more than two characters.

UNLOAD Command

IL RAD SEQ oplb, device 11UKEYIN

The oplb parameter is assigned to a random-access RAD file.

INV OPLB oplb, device HUKEYIN

The oplb parameter identifies an invalid device.

PARAM ERR HUKEYIN

The oplb parameter was missing or contained more than two characters,

WEOF Command

EOT oplb, device HUKEYIN

The end-of-tape was encountered.

1L RAD SEQ oplb, device ! IUKEYIN

The oplb parameter was assigned to a random-access RAD file,

INV OPLB HUKEYIN

The oplb parameter identifies an invalid device.

PARAM ERR UKEYIN

The oplb parameter is missing.

108 Utility Error Messages

Table 22. Control Function Command Error Messages (cont.)

Message Meaning
PRESTORE Command
CORE OVFLO Available core memory has overflowed. The Utility program aborts.

PRE ERR TTUKEYIN

The [*PRESTORE command did not follow immediately after the
I*UTILITY command.

PRE OVFLO

The RAD prestore file on X5 has overflowed. The Utility program aborts.

ASSIGN Command

ERR FRGD IHUKEYIN

An attempt has been made to assign a background operational label to a
foreground operational label, device-file number, or RAD file.

ERR OPLB1 !UKEYIN

The operational label to be assigned is invalid.

ERR OPLB2 IHUKEYIN

An attempt has been made to assign one operational label to an invalid
or undefined operational label or RAD file.

NO SPARES ' TUKEYIN

An attempt has been made to define a new background operational label
but no room is available in the corresponding table.

ERR AREA !TUKEYIN

An invalid RAD area name has been used.

OPLB TABLE OVFL ! HUKEYIN

An attempt has been made to define more than eight unique operational
labels. The assign will be successful, but the operational label will not
be used as an output device.

Table 23. COPY Error Messages

Message

Meaning

CORE OVFLO

The memory area used for storing input records (when the CORE option on
the IUTILITY COPY command is used) has overflowed. The Utility pro-

gram aborts,

IL RAD SEQ oplb, device UKEYIN

An attempt has been made to copy or verify from or to a random-access
RAD file.

OPLB TABLE OVFL HUKEYIN

An attempt has been made to input more than eight operational labels,
Only the first eight unique labels on an I*OPLB card will be entered
in the operational label table,

{DEOF oplb, device }
EOT oplb, device ! UKEYIN

An end-of-tape, or two consecutive tape marks or IEODs were detected
on X4 or Ul before the number of files requested has been compared.

EOF oplb, device 1IUKEYIN

An !EOD or file mark was detected on X4 or Ul before the number of
records requested had been compared.

VERIFY ERR oplb, device

An error has been found by the verification process. When a verification
error occurs, the COPY routine terminates execution of the ! *VERIFY
command for that device, but continues verification on other input
devices. If an error is detected on every input device, the VERIFY
function is aborted.

Utility Error Messages

109

Table 24. Object Module Editor Error Messages

Message

Meaning

BLNK NAME oplb,device ! ' UKEYIN

A blank name was input.

CKSM ERR oplb,device I UKEYIN

A checksum error was detected on a record read from Ul or BI.

EOT oplb,device ! UKEYIN

An end-of-tape was encountered on BI or Ul

ILLEG BIN oplb,device ! UKEYIN

The first byte of a record read from Ul or BI did not contain X'FF'
or X'9F',

NO name oplb,device ' UKEYIN

Two consecutive ! EODs or tape marks on Ul, or one !EOD or tape mark
on BI were encountered during the editing process before the desired
number of modules had been copied (where "name" is the program name
not found).

NO name Ul,device ! 'UKEYIN

Two consecutive EODs or file marks (one end~of-file for a sequential-
access RAD file) are read from Ul before the Object Module Editor has
inserted, replaced, or deleted all requested modules.

SEQ ERR oplb,device ! lUKEYIN

A sequence error was detected in a record read from Ul or Bl

Table 25. Record Editor Error Messages

Message

Meaning

I1LD LIST Ul,device

Both SI and Ul are assigned to the same device. The operator responds
by mounting the tape to be listed and changes the state of the device.

LD INPUT Ul,device ! HUKEYIN

The modify mode was entered and updating is to be performed. The
operator responds by mounting the tape to be input and keying-in an
S response on OC to continue.

INV CTRL 11UKEYIN

A 1*MODIFY control command was interpreted from SI when the Record
Editor was not in the modify mode.

110 Utility Error Messages

Table 26. Sequence Editor Error Messages

Message

Meaning

DELETE ERR !'TUKEYIN

No Ul card images were found in the block to be deleted (for ! *DELETE
and ! *SUPPRESS commands).

DEOF Ul,device ! ! UKEYIN

The program to be updated was not encountered on the input tape before
the logical end-of-tape. An S response causes the Sequence Editor to
return to RBM. All updating done prior to this point has been written,
along with the logical end-of-tape marker on the output tape.

PARAM ERR !N UKEYIN

Case 1. Update data from SI contains an illegal sequence number; that

is, a nonnumeric character. An error alarm is also listed on LO.

Case 2. A necessary control command parameter was omitted.

Case 3. The ident parameter (on an !*IDENT card) is greater than 6, the
sequence number parameter is less than 2, or the sum of the two
parameters is greater than 8.

SEQ ERR oplb,device I UKEYIN

A sequence error was found in either the update data or input tape. In
this case, the oplb parameter refers to either SI or UL, An error alarm is
also listed on LO.

UNRECOV 1/0 Ul,device ! HUKEYIN

An irrecoverable read error has occurred on UL, The partial card image

 input and the message "UI IGNORED RECORD FOLLOWS xxxxxxxx"

(when xxxxxxxx is the previous nonblank Ul ident and/or sequence
number) is output on LO,

UNRECOV 1/O UO,device ! UKEYIN

An irrecoverable write error has occurred on UO. The card image to be
output, and the message "UO RECORD OMITTED" or "UO FILE MARK

OMITTED", are output on LO.

Utility Error Messages

111

10. PREPARING THE PROGRAM DECK

The following examples show some of the ways program
decks may be prepared for RBM operation. Unless stated
otherwise, standard default cases for device assignments
are assumed,

EXTENDED SYMBOL EXAMPLES

ASSEMBLE SOURCE PROGRAM, LISTING OUTPUT
AND BINARY OUTPUT

| IFIN
1IEOD

l Source deck

| IXSYMBOL BO, LO
1JOB

In this example, the symbolic input is received from the

Sl device (always defaulted), the binary output is received
on the BO device, and the listed output is received on the
LO device, Note that although BO and LO are normally
default cases, they must be specified if output to the GO
file (also a default) is not desired.

ASSEMBLE IN BATCH MODE, LISTING OUTPUT AND
BINARY OUTPUT WITH SYMBOL CROSS-REFERENCE

[1e0D
| 1e0D

| Source deck n

IEOD (optional) \

Source deck 2

1EOD (optional)

Source deck 1
| 1xsYMBOL BA,LO,BO, CR
1JOB

n2 Preparing the Program Deck

In this example, the source decks are assembled in batch
mode (BA). In this mode, successive assemblies may be
performed with a single IXSYMBOL command until a
double EOD command is encountered. The parameters
defined on the !XSYMBOL command will hold true for
each assembly in the batch. Each assembly will be fol-
lowed by a Symbol cross-reference (CR).

ASSEMBLE, LOAD, AND GO FROM USER DEFINED
OV FILE, LISTING OUTPUT

[1xEQ
{ 1EOD
[1$ROOT ,,GO, 1
| tOLOAD AN
IASSIGN OV=USEROV, UP

1EOD

——l Source deck

| 1XsYmBOL LO, GO AN
1JOB

{ tEOD
| 1#ADD UP,USEROV, 4,R, N, N
- IRADEDIT
| IPAUSE KEYIN SYS
| IATTEND
1JOB

In this example, the user is defining his own QV file
through a call to the RAD Editor. After assembly, the OV
file is assigned to the user defined file. The call to the
Overlay Loader (!OLOAD) causes it to load the module
defined on the '$ROOT command to the USERQV file for
execution. The advantage to assigning the program to a
user-defined OV file rather than using the RBMOV file is
that the program can be loaded into core for execution
repeatedly without reassembly. Conversely, the contents
of RBMOV cannot be guaranteed to be saved from one job
to another.

ASSEMBLE SOURCE PROGRAM,
LISTING OUTPUT, LOAD AND GO

| IXEQ
| 1e0D
I$ROOT ,,GO, 1
IOLOAD

| tEOD

Source deck
IXSYMBOL LO,GO
1JOB

In this example, the binary object module is loaded into
the RBMGO file located in the System Data area. The call
to the Overlay Loader (1OLOAD) causes it to load the mod-
ule defined on the I$ROOT command to the RBMOV file for
execution, The double comma on the 1$ROOT command
informs the Loader that the temp, exloc parameter options
are defaulted. The "1" following the GO oplb specifies
that one object module is to be loaded.

BASIC FORTRAN IV EXAMPLES

COMPILE MULTIPLE PROGRAMS

I Source Deck(s)

IFORTRAN XP N\

"—’I Source Deck(s)

| 1ForTRAN LO, XP
| 1AssiGN Go=0
1JOB

In this example, output to the GO file is not desired in the
first job, so the GO oplb must be assigned to 0 (see Appen-
dix Eand !ASSIGN command writeup in Chapter 2), An
object listing is desired (LO) and extended precision real
data is specified.

The second job will receive a source listing by default and
extended precision real data is again specified. Since the
parameters are different on the two !IFORTRAN control
commands, the jobs cannot be run in batch mode,

COMPILE, LISTING OUTPUT, LOAD AND GO

[rFIN
[1eoD

IDcfa deck
IXEQ w
| 1EOD
[1srOOT ,,GO,1
___| 1SML N

| 1oLoap AN

IEOD \

JSource deck

_| IFORTRAN

[IATTEND

1JOB

In this example, the IATTEND command specifies that
the Monitor is to go info a "wait" state instead of
aborting the job in case of irrecoverable error (gener-
ally recommended for "load and go" jobs). Binary out-
put will be received on both the BO and GO devices
by default, and standard precision mode is also assumed
by default. The binary object module is loaded info
the RBMGO file located in the System Data area.

The call to Overlay Loader (IOLOAD) causes it to

load the module defined on the I$ROOT command to
the RBMOV file for execution. The double comma on
the ISROOT command informs the Loader that the temp,
exloc parameter options are defaulted. The Loader is

Basic FORTRAN 1V Examples 113

requested to output a LONG map (!$ML). The IXEQ
command causes the executable program to process the
data deck.

COMPILE AND EXECUTE FOREGROUND PROGRAM

This example would be used for debugging purposes only.

[1XEQ
{ 1EOD
[1sROOT , +1800, GO
 157CB +DBOD, +1200

[toLoAD ,F
IPAUSE KEYIN FG, S w
1IEOD
—I FORTRAN source statements
[!FORTRAN
[TASSIGN BO=0
1JOB

In this example, binary output to the BO device is
suppressed. The IFORTRAN control command specifies
that the binary output is to be received on the GO file
by default and standard precision mode is assumed. The
IPAUSE command permits the operator to key in FG,S
to access protected foreground memory. The program is
defined to the Overlay Loader as a foreground program
(YOLOAD, F) and the COMMON base is set to the
FWA of the background. The Loader is to create the
Task Control Block, the first two words of which are
defined on the !$TCB command. These two words spe-
cify that the task is to be connected to interrupt loca-
tion 10D (Integral interrupt number 2, priority level 8,
within group 0).

The !$ROOT command specifies that the root is to be
loaded from the GO file, and will start execution at
location 1800 in foreground memory, The core image
form of the program is loaded on the OV file (RBMOV).
The !XEQ command loads the executable program into
core. When loaded, the task is armed, enabled, and
then triggered.

114 Segmented Foreground Program Examples

SEGMENTED PROGRAM EXAMPLES

ASSEMBLE SEGMENTED BACKGROUND PROGRAM,
LOAD AND GO

seg 1

_ Root (seg 0) seg 2

seg 3

| IXEQ
| 1EOD
[1smP
| 1$5€G,3,0,GO, 1
[155EG 2,0,GO,1

1$SEG 1,0,GO, 1 \

[1srROOT ,,GO,1
[10LOAD 3,8
1EOD

Source deck 4

lSource deck 3
{1EOD

l Source deck 2

L—— IXSYMBOL BA

IEOD

Source deck 1

| IATTEND

1JOB

Given the program tree structure shown above, the sample
deck setup illustrates a background program with a root and
three overlay segments. These are assembled and loaded
into the RBMGO file. The IOLOAD command specifies
that these three segments are to be loaded, and defines it

as a background program (B), The $SEG commands specify
that segments 1 through 3 are attached to the root, and the
modules are to be loaded from the RBMGO file to the
RBMOV file for subsequent loading into core for execution,
A load map is output (1$MP).

LOAD AND EXECUTE MULTIPLE OBJECT MODULES

seg 4
seg 1
Root seg 5
]
seg 2
seg 3

| IXEQ

I 1 Object module
1$SEG 3,0,BI

I ject modules

L——— ISSEG 2,0,81,2

I 1 Object module
$SEG 5,1,B1

1' 1 Object module
[$sEG 4,1,81

1 Object module
1$SEG 1,0,BI

I 3 Binary object modules

— 1$ROOT ,,BI,3

|1oLoAD 5,8

1JOB

Given the sample program tree structure shown above, the
illustrated deck would load and execute the segmented
program, The program is loaded from either the device or
file assigned to the BI operational label. No load map is
requested (an I$SML, 1$MS, or I$MP command could be
inserted after the |OLOAD command if a map was desired).
Although the segments could be loaded in any order, the
proper calling sequence is the responsibility of the user.

RAD EDITOR EXAMPLES

BUILD PUBLIC LIBRARY

Relocatable binary module 5

jl Relocatable binary module 2

I Relocatable binary module 1
| 1spUBLIB E, BI,5
| 1oLoAD
| IASSIGN OV=PUBLIB, UP

IEOD

L————— I7ADD UP, PUBLIB, 48,0, R, R

[1#ADD SD, LIBSYM, 20,0, R, R

| 1RADEDIT
J IPAUSE KEYIN SY, S
1JOB

The Public Library is core resident. In this example, the
user must create two RAD files to set up the Public Library:
the LIBSYM file and the PUBLIB file. The LIBSYM file
contains the Symbol Table for the Public Library and is used
by the Overlay Loader to satisfy references to the Public
Library. The PUBLIB file contains the Public Library and

is booted in with RBM, (RBM must be rebooted to load the
updated Public Library.)

RAD Editor Examples 115

LOAD ROUTINES IN USER LIBRARY

[17END

I Object n'.n.odu-le (RMAX iderﬁ)
[1#LADD UL, RMAX, B

4

[Object module (TUU ident)

1#LADD UL, TUU, E w

l-Obiecf module (RDATA ident)

———— 1#LADD UL,RDATA,M

| 1#ADD UL, MODULE, 50,0, R, R

| 1#ADD UL, MDFRF, 2,0,R,R
1#ADD UL,BDFRF, 2,0,R,R

[1#ADD UL, EDFRF, 2,0,R,R
| 1#ADD UL, EBCDIC, 6,0,R,R
—— 1#ADD UL, MODRR, 3,0,R, R
| 'RADEDIT
| IPAUSE KEYIN SY, S
TJOB

In this example, the User Library requires the following
six files to be allocated in the User Library area (UL):

MODIR, EBCDIC, EDFRF, BDFRF, MDFRF, and MODULE.

The 1*LADD command enters the routines into the defined

four files, depending on the library code parameter on the
1#LADD command: Basic (B), Main (M), or Extended (E).

The same basic method is used to set up the System Library.

116 Utility Examples

UTILITY EXAMPLE

CREATE A CONTROL COMMAND FILE

[1EOD
[1eOD
| 108

Control command deck

[1JOBCH
| 1*copy F

—— 1*OPLBS UO

| 1*ASSIGN UO=CCFILE, UD

1*ASSIGN UI SI w

| IUTILITY COPY

| 17END
——— 1#ADD UD, CCFILE, 5,80,C, N
[TRADEDTT
1JOB N\

In this example, the job stream will create the compressed
file CCFILE in the User Data area. Control commands will
be read from the SI device into file CCFILE. The job
stream on CCFILE may now be executed by assigning

CC = CCFILE,UD. Note that CCFILE must not have a
1JOB command on its first entry, since this would imme-
diately transfer CC back to the SYSGEN assignment. How-
ever, it is often convenient to end the control command
file with a 1TJOB command to initiate a return to the
SYSGEN assignment.

rA 1 JOB command must not be the first card in the Control

Command deck; !JOBC is permissible.

11. SYSTEM GENERATION AND SYSTEM LOAD

INTRODUCTION

An RBM system designed for the requirements of a specific
installation is generated in two phases: SYSGEN (System
Generation) and SYSLOAD (System Load). These two phases
create the Monitor and its required overlays. The SYSGEN
phase defines RAD allocation or allows the user to override
the nominal area allocation.

SYSGEN loads only the specific installation parameters;
none of the processors are loaded at this time. Itsonly out-
put is an optional, rebootable version of the Monitor, This
rebootable Monitor is output on the PM (Punch Monitor)
assigned device.

When SYSGEN is completed, core memory is set up for the
SYSLOAD function to load the RBM overlays. System pro-
cessors, user processors, and other user-determined programs
are loaded onto the RAD by the Overlay Loader or the RBM
Absolute Loader.

It is possible to modify the Monitor and/or its associated
processors individually without going through the entire
system generation process. Specifically,

e A new version of the RBM can be written without of-
fecting the remainder of the RAD. Therefore, reloading
the entire RAD will not be necessary.

e Anything on the RAD can be replaced without going
through a SYSGEN as long as the replacements do not
exceed their SYSGEN-defined areas.

e One installation can perform a SYSGEN for another
installation and merely forward a copy of the reboot-
able RBM binary deck. However, the recipient
facility will have to perform the SYSLOAD; that is, it
will have to load the RBMoverlays, the system proces-
sors, the user processors, and other installation specific
programs on the RAD.

SYSGEN
INITIAL CORE ALLOCATION

The RBM system is assembled in two parts. Part 1 is assem-
bled in absolute and contains SYSGEN (and SYSLOAD),
and Part 2 is a stack of relocatable binary decks that may
be loaded onto the RAD by SYSLOAD. (A list of these
modules and their corresponding idents is given in Table 20.)
Part 1 is loaded by an Absolute Loader (see !ABS control
command in Chapter 2). Nonoptional resident portions of
RBM are loaded into the low core (0K-4K) locations from
which they will execute; optional resident routines and the
system generation routines are loaded into high core
(4K-12K). RBM overlays are loaded at SYSLOAD time.
The absolute binary deck that includes all optional routines
is initially loaded by the Absolute Loader.

After this deck is loaded, the Absolute Loader enters the
"wait" state. At this point the operator must enter the
device number of the keyboard/printer into the data
switches. (The device number used is that of the keyboard/
printer employed by SYSGEN to communicate with the

operator.) Then the operator may clear the "wait", and
SYSGEN will continue.

MINIMUM CONFIGURATION

The following minimum configuration is required for the
RBM system generation:

1. Keyboard/printer.

2. Minimum of 16K of core storage.

3. RAD of at least .75M bytes or disk pack.
4. Protection and memory parity features.

5. Hardware interrupts for the RBMControl Task and 1/O.

OPTIONAL ROUTINES

There are two basic divisions of the optional routines:
those actually resident at all times and those functioning
in the overlay region. All of the routines listed in
Table 29 function in the overlay region and therefore con-
tribute essentially nothing to the resident size of RBM. The
optional resident routines that contribute to the size of
RBM are as follows:

Approximate Size

Routine (decimal)
Power On/Off 196
Accounting (Clock 1) 216
High-Speed Line 79
Printer Handler

Magnetic Tape Handler 208
Multiply/Divide Simulation 175
M:IOEX 188

The presence of these optional routines is primarily depen-
dent on the installation hardware configuration, which is
partly determined as the device-file information is input.
If the indicated hardware is present, SYSGEN moves the
optional routines to the resident portion of RBM or set the
appropriate overlay ident into the overlay table.

System Generation and System Load 117

For example, if a Y response is given for the INC. MUL/
DIV.SIM. query, SYSGEN moves the multiply/divide
simulation package that is included in Part 1 to the proper
location in core. As another example, if CR4/XX,B is
typed under the heading DEVICE FILE INFO, SYSGEN
enters the ident of the card reader error recovery routine
in the OV:LOAD table. SYSLOAD encounters this ident
while loading Part 2, singles out the corresponding module,
and saves it as an overlay on the RAD.

Debug and the Character-Oriented Communications handler
operate in the foreground; either aresident foreground region
or a nonresident foreground area must be allocated if they
are to be included.

A method for determining the size of RBM before a SYSGEN
is performred is given in Appendix I.

CORE MEMORY ALLOCATION

Core memory is allocated in the following manner (see
Figure 10):

1. The first 256 words in lower memory (the zero table)
are reserved for a communication region (see Table 1).

2. The region from (decimal) 256 to 399 is reserved for
internal and external interrupt levels; any space not
required for interrupt levels will be used by the
Monitor for table space.

3. The remainder of core will be aflocated by SYSGEN
as follows:

a. Resident RBM, to be loaded beginning at location
400 (decimal) and to include only optional routines
selected by SYSGEN.,

b. Public Library (if allocated).
c. Resident Foreground (if allocated).
d. Nonresident Foreground (if allocated).

e. Background, at least one page whether or not
required; minimum amount allocated should be
length of the Job Control Processor (3500 locations,
decimal). See Figure 11.

4. No foreground space need be allocated for a batch-
only system.

When all user inputs necessary to calculate the exact size
of the resident RBM are made, the ending address of
RBM will be output by SYSGEN, The user will then input
starting addresses for the Public Library, the resident fore-
ground, the nonresident foreground, and the background.
The user should decide which of these areas are more apt to

118 SYSGEN

need additional core space and make the core allocation
accordingly. A given area could then expand in a future
SYSGEN, but only the programs in that area would have to
be reloaded and not the entire system. (In Figure 13, for
example, the resident foreground might expand into the
unused Public Library area.)

Figures 12 and 13 illustrate the core layout both after abso-
lute load and after SYSGEN and SYSLOAD.

RAD ALLOCATION

During SYSGEN, the total RAD space is divided into a
minimum of 1 and a maximum of 20 different areas. Each

area is labeled with an area mnemonic, usually from the
following list:

SP UP CP Dn
SD UDb BT Xn
SL UL

where n is a hexadecimal digit.

Areas are allocated by tracks, so the actual size of an area
is dependent on the type of RAD device. The various track
sizes are given below:

7202/4 2880 words
7232 6144
7242 3072

If the first area allocated to each RAD is not preceded by an
SK (skip track) input, the system bootstrap will be written
in sector 0, and the area will actually begin at sector 1.
All other areas, with the possible exception of the BT areq,
will always start on a track boundary. The five areas
described below may receive default allocations. During
RAD allocation, the user must specify a system RAD to
receive the default areas. An SK input as the last input on
the system RAD will be ignored if default allocations are
to be made.

The areas that may be default allocated and their sizes are

SP Only large enough to contain RBM overlays
and all standard processors (see Table 6). This
is the only mandatory area.

SD Only large enough to contain nominally large
RBM GO and RBM OV files and other small
files (i.e., RBM S2, RBM ID etc.).

SL Only large enough to contain the standard
system libraries: standard precision, extended
precision and common, or main libraries.

CP Only large enough to contain all of
background.

(K:PLFWA)

(K:RFFWA)

(K:NFFWA)

(K:BACKP)

(K:BACKBG)

(K:UNAVBG)

PROTECTED

Low Core

External/Internal Dedicated Interrupt Locations
Zero Table: Constants and Pointers

Resident RBM

Selectable, optional RBM Routines

1/O tables for RBM

Transfer Vector Table

RBM

Public Library

Real-time task #1 temp stack

Task Control Block #1

Real-time task #1

Real-time task #2 temp stack

Task Control Block #2

Real-time task #2

Special end-action 1/O routine

Foreground program #1 COMMON

Resident
Foreground Program #1

-
.
.

Additional Resident
Foreground

Real-time task #N temp stack

Task Control Block #N

Real-time task #N

Nonresident
Foreground Space

Bocikground TCB

UNPROTECTED

Background temp stack

User main program

User subprograms

Library subprograms

Blank COMMON (if any)

Background Program

High Core

Figure 10. RBM Core Memory Allocation Example

SYSGEN

119

Low Core

High Core

Background TCB, without PSD
(In protected memory)

Floating accumulator (5 locations)

FORTRAN 1/O Format Information

Allocated temporary space

Unallocated (as yet) temporary
space for Public Library Use

User Program and subprograms
(Including any library routines
not in the Public Library)

Unused core

RAD 1/O Blocking Buffers
(From 1 to 16 buffers; size of
buffer determined at SYSGEN)

Blank COMMON (if any)

(Unavailable Memory)

(K:BACKP)

(K:BACKBG), (K:BASE)

TEMPBASE+6

K:DYN

TEMPLIM

(K:BACKBUF)

(K:UNAVBG)

120 SYSGEN

Figure 11.

Background Core Allocation Example

RBM Zero Table

RBM Resident Routines

RBM Optional Resident Routines
and Tables

RBM SYSGEN

RBM SYSLOAD

RBM Optional Nonresident
Routines

TVECT Table

Figure 12. Core Layout After Absolute Load

RBM Zero Table

Interrupt Locations (Unused Interrupt
Locations Used by RBM Tables)

RBM Resident Portion
{Nonoptional Routines)

RBM Overlay Region (512 Words)

RBM Resident Region (Optional
Routines)

Unused RBM Area

Transfer Vector Table for
RBM and Public Library

Public Library

Unused Public Library Area

Resident Foreground

Unused Resident Foreground Area

Nonresident Foreground

Unused Nonresident Foreground Area

Background (RBM Overlay Area for
JCP)

100

190

High Core

Figure 13.

Core Layout After SYSGEN and SYSLOAD

BT Remaining RAD space. The last track avail-
able for the default assignment of this area is
device specific, as follows:

Device Last Track Available+1
7202 123

7204 506

7232 506

7242 4000

For all devices except a 7242, all available tracks may be
allocated. Tracks at the upper end of the device are used
as alternates for bad tracks within an area. The RAD allo-
cation at SYSGEN constructs the Master Dictionary, con-
sisting of four words per entry. The only restrictions are
that each area mnemonic must be alphanumeric, the size of
the Master Dictionary may not be exceeded, and if an area
is allocated twice, the space originally reserved will be
lost.

FILE CONTROL TABLE ALLOCATION

The File Control Table (FCT) is indexed by device-file
number and contains information about all device-files in
the system. The total size of the File Control Table is
determined and allocated at SYSGEN time. The term
"device file number" (DFN) indicates the order in which
devices are defined. For example, since the first device
defined must always be o keyboard printer; DFN 1 will al-
ways specify a keyboard printer. Devices other than the
RAD have permanent device-file number assignments made
at SYSGEN time. SYSGEN allows room for up to 50 per-
manent device-files (not including RAD files).

A separate device~file (i.e., FCT entry) is required for
each open file on the RAD. Hence, the total number of
entries necessary in the File Control Table for all RAD files
is the maximum number of simultaneous open files. At
SYSGEN time, the user must specify this maximum number
of device-files for his foreground programs. For the back-
ground, nine device~files will be allocated (a sufficient
number for the system processors), if the user does not
choose to override the default case.

SYSGEN always allocates three foreground RAD files for
use by the Monitor in addition to the number of RAD fore-
ground files input by the user. Hence, the total size of the
File Control Table will be the sum of the number of non-
RAD files assigned, plus the total number of RAD files re-
served for foreground use plus three, plus the number of
RAD files reserved for background use (nine, if none are
explicitly reserved).

The user can make file dictionary entries on the RAD for
his foreground programs and then permanently allocate a
foreground device~file number to that RAD file by assigning

SYSGEN 121

the RAD file to a foreground operational label. A device-
file number reserved for background use is assigned by the
Monitor service routines M:DEFINE and M:ASSIGN when-
ever a call is made to either of these routines. For RAD
device-files, SYSGEN allocates the appropriate space in
the File Conirol Table and sets the background/foreground
indicator, the "file for RAD use" indicator, the maximum
retry counter, and the pointer to the I/O Conirol Table.
For non-RAD files, SYSGEN sets in the File Control Table
the background/foreground indicator, the channel number,
the device type number, the "file for non-RAD use" indi-
cator, the device number, the maximum retry counter, and
the pointer to the 1/O Control Table.

SYSGEN also allocates space for the 1/O Control Table.
The amount of space required for each type of device is
contained in the Device Type Table.

OPERATIONAL LABEL ASSIGNMENTS

During SYSGEN the user specifies the selected standard

operational labels and assigns each to a device-file num-
ber (other than a RAD file number) or to device-file zero.
These assignments will be maintained as permanent assign-
ments for the appropriate operational label.

The operational labels listed below are normally associated
with RAD files. Therefore, permanently assigning these
labels to non-RAD files at SYSGEN time is not permitted.

Operational

Label Use

RM Used by RBM to load the RBM overlays
and is reserved exclusively for RBM.

ML Used by M:LOAD to load nonresident
foreground programs.

P1 Should be used by any background program
with overlays to load the overlay segments
from the RAD. For system processors, Pl
is assigned to the processorfile. For back-
ground programs loaded with an XEQ com-
mand, PI is assigned to OV. Foreground
programs must specifically assign an opera-
tional label to the file from which overlay
segments are to be read.

ov Normally assigned to the RBMOV file for
"assemble and go" type operations.

X1-X5 Processor scratch files.

S2 XSYMBOL standard procedures.

GO Normally assigned to the RBMGO file

for "assemble and go" type operations.

122 SYSGEN

After all inputs are made by the user, SYSGEN allocates

three additional entries in the Foreground Operational
Label Table for RAD foreground labels.

A total of 100 operational labels can be allocated and
assigned at SYSGEN time, including those automatically
allocated by SYSGEN,

INPUT PARAMETERS

When RBM is loaded and control is transferred to the
SYSGEN routine, operator infervention is required to input
the system parameters. The following device types are
standard and must be referred to by name when inputting
the device-file definitions:

SYSGEN Device Device

Type Name Device Characteristics Nome

KP Keyboard/printer KP

M9 Magnetic tape, 9-track MT

PT Paper tape handler PT

M7 Magnetic tape, 7-track, MT
packed binary option

B7 Magnetic tape, 7-track MT
BCD option

RD' RAD or disk pack RD

XX Special-purpose device for -
use with M:IOEX

LP2 Line printer, 240 Ipm LP

LP8 Line printer, 800 lpm LP

CR4 Card reader, EBCDIC option, CR
1400 or 400 cpm

BR4 Card reader, BCD option, CR
1400 or 400 cpm

CP3 Card punch, 200 cpm Ccp

BP3 Card punch, BCD option, CcpP
200 cpm

CP1 Card punch, EBCDIC CP

option, 100 cpm

'RD is used only to reserve a specific number of foreground
or background RAD files, not as a name of the form dtnn.

SYSGEN Device Device
Type Name Device Characteristics Name
BP1 Card punch, 100 cpm Ccp

PL Graphic ploﬂ'erf PL

'REM supports the graphic plotter as a device type but will

not do any special converting or formatting. The user can

either use the existing library routines to format data for

the plotter or perform his own formatting.

Table 27.

The Run-Time names are used by M:READ/M:WRITE for op-
erator communication.

Table 27 defines the system parameters that are input via the
keyboard/printer, paper tape reader, or card reader during
SYSGEN. Note that all numeric entries can be input in
either decimal or hexadecimal with leading zeros ignored;
all hexadecimal entries must be preceded by a +. Comments
can be added fo any input by leaving one space after the
required input is made. All inputs from the keyboard/printer
must terminate with a NEW LINE code. Commas are used
to separate fields. If an input/output device is not in the
START state, an appropriate message will be written on the
keyboard/printer.

SYSGEN Input Options and Parameters

Output Message

Input Parameters

Description

11RBM SYSGEN
INPUT DEVICES

Device Name and Number

(e.g., CRA/03, LP8/02;KP,

NO;PT20, KP)

Device name and device number of the input and
output devices to be used during SYSGEN, If the
keyboard/printer is to be used exclusively, only KP
need be input. The only acceptable device names
are CR, LP, KP, PT, or NO.

VERSION

Two alphanumeric characters | The RBM version will be stored in a zero table lo-
(e.g., Al or A2 or Bl, efc.) | cation, K:VRSION, output by RBM on LL at the

start of each job and by postmortem dump whenever
it runs.

MEMORY SIZE

Numeric size

Total core memory size of Sigma 2/3, stored in a
zero table location, K:UNAVBG.

MAX. INT. LOC.

Address

Maximum Sigma 2/3 address for real-time external
interrupts (263 < A < 400)." The space unused by
the interrupts will be allocated to RBM tables by
SYSGEN.

CONTROL TASK INT. LOC.

Address

Address of interrupt used by RBM Control Task. Must
be the interrupt with the lowest priority available,

INT. CHANNELS}
EXT. CHANNELS

x=-yor0

Indicates the numbers of the I/O channels specific
to this installation. x is the first channel number,
and y is the last number. If no channel exists for
this IOP, a 0 is input. Sigma 2, for example, would
always have an input of 0 for EXT. CHANNELS.
The number of channels must be greater than four but
less than 20 for Sigma 2 (less than 28 for Sigma 3).
For Sigma 3, 0 through X'B' are the internal chan-
nel numbers and X'C' through X'1B' are the exter-
nal channel numbers.

tAlfhough Sigma 3 has provisions for interrupt locations only as high as 368, 400 is considered to be the beginning of
operating RBM for compatibility with Sigma 2. The 32 extra cells are used for input/output tables.

SYSGEN 123

Table 27. SYSGEN Input Options and Parameters (cont.)

Ovutput Message

Input Parameters

Description

NO. LINES/PAGE

Number

Number of lines to be printed on each page during
an Extended Symbol assembly. SYSGEN will save
the input value in zero table location K:PAGE, for
later use by Extended Symbol in printing out a title
at the top of each page. Input value n must be

0 < n <+ 8000.

NO. DEFS IN PUB. LIB.

Number

Number (n < + 100) of definitions (DEFs) in the
Public Library. This input is needed so that the
Transfer Vector Table can be correctly allocated.
If zero is input, SYSGEN assumes there is no
Public Library.

NO. ENTRIES IN
NONRES. FGD. QUEUE

Number

Reflects the maximjm queue size for nonresident
foreground programs.

NO. FGD PARITY ERRS

Number

Number of parity errors to allow in foregrouﬁd
before disabling the foreground task.

NO. DICT. ENTRIES

Number

Specifies the length of the Master Dictionary.
Entries are already allocated for SP, SD, SL, CP,
and BT. A number from O to 15 may be input,
specifying the additional Master Dictionary eniries.
Each entry requires four words.

ALT, TRK. POOL SIZE

Number

Specifies the length of the Alternate Track Pool,
which will contain bad track numbers. It should
be at least as large as the maximum number of
known bad tracks. The bounds are 0 to 512,

RAD ALLOCATION

RDxx/dn , {]E} /S
(for example, RD42/E1,S)

xx specifies the device type as follows:

02 7202
03 7203
04 7204
32 7232
42 7242

dn is the hardware device number for this RAD,
which must be driven by a channel defined
previously under "INT CHANNEL" or "EXT
CHANNELS". Each device can only be input
once, but as many as 12 devices, each with area
allocations, may be input. I or E specifies the IOP
type; I refers to an Internal IOP, and E to an External
IOP. E is assumed for a 7242 or 7246 and is the de-
fault case for a 7232, IorE must be input for a 720x.
If this parameter is not used, an intervening comma
before the next parameter is not necessary.

S indicates that this device is to receive default
allocations. If more than one S parameter is input
the last is used. If S is not input, the device re-
ceiving the SParea is used. Either S or the SParea
must be input.

124 SYSGEN

Table 27. SYSGEN Input Options and Parameters (cont.)

Output Message Input Parameters Description
RAD ALLOCATION (cont.) Yy =2z yy is any area mnemonic, usually from the following
For example: list
SP =30 SP UP BT Dn
SD =20 SD UD CP Xn
D1 =100 SL UL
D2 =200

where n is a hexadecimal digit.

zz is the number of tracks to allocate for area yy.

If zz =0, area yy will be undefined, and an
additional Master Dictionary entry will be available.
If zz = ALL, the area will occupy the remainder of
the RAD and no other inputs may be made for this
RAD. If yy = SK, zz number of tracks will be skipped
before the next area is allocated. But to be mean-
ingful, another area must be input. If the first
input is not SK = 2z, this RAD will receive a system
bootstrap in sector 0 and the next area will actually
begin in sector 1. If no orders are allocated on
RAD dn, however, no bootstrap will be written.

END Terminates the RAD ALLOCATION parameter.

In the example given, areas SP, SD, D1 and D2
will receive the number of tracks specified. SL,
CP, and BT will be default allocated, (as described
under RAD ALLOCATION) on this same device.

BUFFER SIZE 180 or 512 Specifies the blocking buffer size for all Monitor
blocked files in this system.

INC. POWER ON/OFF Y or N Yes (Y), if Power On/Power OFff routine is to be
included in resident RBM,

INC. MUL/DIV, SIM, Y or N Yes (Y), if multiply/divide software is to be in-
cluded. If multiply/divide hardware exists,
No (N) should be input.

INC. M:IOEX Y or N Yes(Y), if optional RBM service routine M:IOEX
is to be included.

INC. CLOCK ONE Y or N Yes (Y), if Clock 1 is to be used by RBM for job
accounting, for limiting the execution time of
background jobs, for time limits on 1/O transfers,
and for keeping time of day. If No (N) is input,
Clock 1 is not available and SYSGEN will not load
the job accounting portion of the RBM Control Task.

INC. DEBUG Y or N Yes(Y), if RBM Debug is to be included. If Debug
is included, at least 200(1 ¢) foreground cells must
be allocated and Debug 1/O devices may be input
below, under DEVICE FILE INFO. If No (N) is
input, Debug will not be loaded and the user can
use the 32 zero table Debug cells as additional
foreground mailboxes.

SYSGEN 125

Table 27. SYSGEN Input Options and Parameters (cont.)

Output Message

Input Parameters

Description

INC. MISC. Y or N Yes (Y), if the non-Debug Core Dump, RAD Dump,
and Hex Corrector routines are to be included in
RBM. If a Y response is given, the resident size
of RBM will increase by 85(10) cells.

INC. C.O.C. Y or N Yes (Y), if Character-Oriented Communications

Handler is to be included. If COC is included, at
least 1000 cells must be allocated for resident
foreground.

[(INC. DEBUG)]

DEVICE FILE INFO.

-

The first parameter, dt, specifies a certain pe-
ripheral and must be one of the device type names
listed previously under "Input Parameters". The
second parameter, nn, is the hardware device
number of this peripheral and must indicate a pre-
viously defined channel. The third parameter, x,
is F if this is a foreground device, B if this is a
background device, DI if this is a Debug input
device, or DO if this is a Debug output device.
(DI and DO will not be accepted if an N (no) re-
sponse was given to the INC. DEBUG message.)
The last parameter, I or E, is required to indi-
cate IOP type for a multiunit device; I indicates
an internal IOP, and E indicates an external IOP.
The last parameter is ignored if the device is not a
multiunit type.

The first device-file entry, DFN 1, must be KPnn, F.
The term "device-file number", abbreviated as DFN,
indicates the order in which device parameters are
input in response to the DEVICE FILE INFO. output
message.

RD, %, y

This entry indicates to SYSGEN that y RAD File
Control Table entries are to be saved for the mode
specified by the parameter x (same as x above, ex-
cept that DI and DO cannot be used). The y pa-
rameter may be one or two decimal digits. An entry
must always be input for the foreground, and a
default number of 9 is used for background files if

a user fails to allocate any background file. (Thus
if no input is given, SYSGEN will reserve nine
background RAD file entries.) The value 9 is always
added to the background allocation.

Examples:
DFN No. Device-File

KP40,F

LP8/02,B
CR4,/03,B
CP1/04,B
PT20,B

BRA4/03,B
M9DO, B,E
M9D1,B,E
M7EO, B,E

VONOOGDhWN—

126 SYSGEN

Table 27.

SYSGEN Input Options and Parameters (cont.)

Output Message Input Parameters Description

DEVICE FILE INFO. RD,x,y (cont.) Examples:

[(INC. DEBUG)] DFN No. Device-File

(cont.)
10 B7EO,B,E
11 LP2/05,F
12 CR4/03,F
13 M9DO,F,E
14 M9D1,F.E
15 XXDo,F
16 LP8/02,D0
17 CR4,/03,D1
18-27 RD,B,10
28-46 RD,F,20

END

END

Signifies end of device-file information.

BCKG. OP. LBL.

Operational label = device-
file number, or device unit
number =device-file number
(one per line, terminated by
END); 0=n means reserve n
locations in Operational
Label Table for temporary
assignments. (Temporary
space is needed for execution
time temporary assignments,
or for RAD files above and
beyond that number (9) which
is automatically allocated
by SYSGEN).

Examples:
S1=3
102=4
0=3 (reserves three addi-

tional entries in Op-
erational Label Table)

Background operational labels or device-unit number
and device-file number equivalents for permanent
I/O assignments. No operational labels can be
assigned to RAD files at SYSGEN time. A maximum
of 188 background and foreground operational labels
can be input by the user. The following operational
labels are defined by RB7; thus, they may not be
input:

RM ov
ML GO
PI

END

Signifies end of background operational label.

FGD. OP. LBL.

Same as for background, ex~
cept that space for three
operational labels is auto-
matically assigned.

Foreground operational labels or device unit number
and device-file number equivalents for permanent
foreground 1/O assignments. No foreground opera-
tional labels can be assigned to RAD files at
SYSGEN time.

RBM LWA =+ xxxx

None

At this point, SYSGEN will have sufficient infor-
mation to calculate the exact size of RBM. This
message is output to the operator as an aid in the
follow=on inputs. If the user has only background,
he will have to input an address for the start of the
background (i. e. , at least 38 cells greater than the
RBM LWA output). This value (i.e., + xxxx) can
be predetermined by using the algorithm given in
Appendix L.

SYSGEN 127

Table 27.

SYSGEN Input Options and Parameters (cont.)

Output Message Input Parameters

Description

PUB. LIB. Fwal Address

If zero has been input for the number of DEFs in the
Public Library, this typeout will not occur. Other-
wise, the input should reflect the first word address
of the Public Library (which may be equal to RBM
LWA). An input of zero is illegal. This value is
stored in zero table location K:PLFWA,

RES. FGD. FWAF Address

First word address of the resident foreground area.
An input of zero indicates no resident foreground.
This value is stored in zero table K:RFFWA.

NONRES. FGD, FWA! Address

First word address of nonresident foreground area.
An input of zero indicates no nonresident foreground.
This value is stored inzero table location K:NFFWA.,

BCKG. FWA! Address

First word address of background memory. This ad-
dress must start on a page boundary (some multiple
of 10074). This value is stored in zero table loca~
tion K:BACKBG.

the 'Q" key=-in.

i.These four addresses must be in increasing order. That is, the core allocation must be made in the same order as the
SYSGEN input. If nonresident foreground is used, it must be at least 218 cells long. This area is used as a buffer for

SYSGEN OUTPUT
MESSAGES TO THE OPERATOR
The error messages in Table 28 can be output by SYSGEN,

Note that for input errors (except for an allocation error),
the corrected input must be made from the KP exclusively.

BINARY OUTPUT

If a background PM (Punch Monitor) operational label is
assigned at SYSGEN time, SYSGEN will punch a reboot-
able version of the RBM on the PM device ofter the last
parameter has been input by the operator.

SYSLOAD

SYSTEM LOAD

After SYSGEN has been completed, or the rebootable RBM
deck punched by SYSGEN has been input, control is trans-
ferred to the System Load Processor, SYSLOAD. SYSLOAD
will initailly output the following message on the OC
device:

1IRBM SYSLOAD

TTINPUT OPTION

128 SYSLOAD

The option to be input on OC should be either one of the
following:

PA specifies that patchesare toread from the input
device, with the format xxxxbf)yyyy[bf)zzzz]. ..
IEOD where xxxx is the location to be patched,
and yyyy and zzzz are the values to be inserted
at location xxxx. All entries must be four char-
acters long, separated by two blanks. The 'EOD
terminates patching and causes the !NNPUT
OPTION message to be output again. The ALL
or UPD option can then be entered.

ALL which specifies that a complete system load
is to occur and nothing on the RAD is to be saved;

or

UpPD which specifies that an updated version of RBM
has beenmade to replace the existing RAD version,
Portions of the RAD may have tobe reloaded, de-
pending on the new core memory allocation.

ALL OPTION

An ALL input specifies that a complete system load is to
occur. A complete load is necessary for the initial genera-
tion or whenever any of the RAD areas has to change size.

The System Load Processor (SLP) first searches the Master
Dictionary left by SYSGEN to determine if any RAD areas
have not been completely defined because of an ALL input
during SYSGEN, If some areas still need their last word

Table 28. SYSGEN Error Messages

Message

Meaning

Recovery

I TINVALID PARAMETER

Input parameter is out of
expected range, or maximum

- number of allowable inputs

have been made.

Retype input with correct value.

I TFORMAT ERR

Input format not valid.

Retype input with valid format.

IIC. T. INT. PRIORITY ERR

Control task interrupt is at
a higher priority level than
the 1/O interrupt level.

Requires hardware modification, or reassignment
of Control Task Interrupt to a lower level.

111/0 ERR

An I/O error has occurred
on the last input.

Correct the problem with the input device and
retype last input.

HALLOCATION ERR

No RAD was defined as the
system RAD,

Since this alarm is output only after the END card
is input (i.e., ofter the RAD allocation has been
completed), the user must reallocate all areas
assigned fo the system RAD. The default allocations
will be restored for the second iteration. The com-
puter will enter a "wait" state so that the error can
be isolated and corrected unlike other SYSGEN
errors. The corrected inputs must be made on the
original input device.

TOO MANY AREAS

Not enough entries were
defined in the Master
Dictionary.

Fewer entries must be input or more Master Dic-
tionary entries must be made available. In any
event, RAD allocation must be restored.

RBM CAN'T BOOT

RBM resides on a 7242 disk
and crosses a cylinder
boundary.

SP must be reallocated during a second RAD
allocation.

'ILLEGAL OP. LBL.

The user has attempted to
permanently assign one of
the reserved op labels (RM,
ML, PI, OV, GO).

Retype input with different op label.

addresses defined, SLP will generate this value so that the
Master Dictionary can now be completed.

LOADING RBM PART 2

At this point the SLP outputs the following message:

At this point a check is made to determine if the check-
point area is large enough to contain the entire background.
If it is not, the following message will be output:

CP AREA TOO SMALL

The CP area will be undefined.

This error is only fatal if an attempt is made to checkpoint
the background. It can be corrected only by a complete
SYSGEN, using at least the default size for the check-

point area.

I1LOAD RBM PART 2

If SLP encounters a track upon which it cannot write, an
appropriate message will be output and that track number
will be entered in the Alternate Track Pool. For a disk

device, SLP will clear only the first sector of each areq,
and will obtain bad track numbers for the Alternate Track
Poo! from the headers of tracks 4000 to 4360.

SLP will then write the following into the first sector of

each area: the area mnemonic, the bounds of the area,

After the Master Dictionary has been completed, the SLP
will write zeros on all defined areas of the RAD. This pro-
cess takes approximately 1 minute for a 256-track RAD,

and a bad track list for all bad tracks on that device. SLP
will also clear the second sector of each area.

SYSLOAD 129

The binary modules making up Part 2 should be input from
the background Al device (as determined at SYSGEN),

So that a user does not have to reorganize Part 2 for each
new SYSGEN, SYSLOAD allows all or Part 2 to be input
each time, but only loads the routines specified by the
options selected during SYSGEN. The final module must
be followed by an 1EOD. The ident from the Extended
Symbol directive, IDENT, is used to identify each module
loaded, and is placed in the OV:LOAD table and used as
the overlay identification.

RBM PART 2

The routines making up RBM Part 2 and their idents are
listed in Table 29.

Table 29. Routines and Idents for RBM Part 2

Ident
Group Overlay (hexadecimal)
Monitor M:ASSIGN Al
Service M:DEFINE A2
Routines M:OPEN A3
M:CLOSE A4
M:LOAD A5
© M:DOW Aéb
M:WAIT A7
M:CTRL A8
M:RSVP A9
M:DATIME AA
M:COC AB
RAD Bootstrap AC
Control Task S:CKPT 1
Subtasks S:REST 2
S:LOAD 3
S:ABORT 4
S:TERM 5
S:KEY 7
S:KEY2 71
S:KEY3 72
S:KEY4 73
S:PMD 8
S:CCI B
S:PARPWR FF
Power Failure B1
Background BACKCCI 10
Debug All Overlays 20-2F
Device- All 30-3F
Dependent
Error Recovery
Routines
Miscellaneous Core Dump and
Routines RAD Dump 40
Hex Corrector 41
FCT Dump 42

130 SYSLOAD

SYSLOAD loads the required overlays, absolutizes them for
their execution location, and writes each overlay on the
RAD in an unpacked format. Only one overlay can occupy
the overlay area in memory at any one time. SYSLOAD
stores the RAD address (as a displacement) and the word
count of each overlay in the RBM OV:LOAD table. The
OV:LOAD table has the following format:

OV:LOAD Number of entries
FWA Ident Eirst
Word size entry
0 4 15

Consecutive entries

where FWA is the starting sector number (relative to the be-
ginning of the system processor area) of this overlay. All
overlays start on a sector boundary. No overlays cross a
track boundary.

If an error condition occurs during the loading of the indi-
vidual modules making up RBM Part 2, the following mes-
sage is output:

XX ERR, ID:YY

??RETRY?
where
XX is one of the following error types:

XX Error Type

Cs Checksum.
5Q Sequence.

TY Item type; no external references or
definitions are allowed.

BI Binary deck is incomplete.

OG Origin error; an attempt has been
made to re-origin a portion of this
routine to a region already on the

RAD.

YY is the ident of the current routine (if the ident
is unknown, YY = ?7).

The response to the RETRY query can be either N (no) or
Y (yes). If the response is N, the SLP skips to the next
routine, If Y is input, the current routine is left as is and
an attempt is made to continue with the next card; for some
of the above errors, however, continuing in this manner may
be undesirable.

After loading all of RBM Part 2, SYSLOAD determines if all
required routines are present. If some routines are missing,
the following alarm is typed:

VEMISSING IDENTS: xx xx xx xx . . .
??RELOAD?

where xx is the ident (Extended Symbol directive IDNT)
corresponding to the missing routine.

If Y is input to the reload query, SYSLOAD again reads the
Al device to load the missing routines. This sequence is
repeated until all required routines are loaded or until an N
is input.

After RBM Part 2 has been loaded, entries will then be
made in the System Processor Dictionary for RBM, the Trans-
fer Vector Table, and the RBM bootstrap. Each of these
items is assigned in a separate file in the system processor
area of the RAD.,

After the nonresident portion of the RBMis on the RAD, the
resident portion is written. SYSLOAD calculates the IOCDs
needed fo read RBM into core storage and stores the infor-
mation into the last part of the RAD bootstrap.

After RBM is written on the RAD, the Transfer Vector Table
will be written onto the TVECT file. The Transfer Vector

Table contains transfer vectors for Monitor service routines
and Public Library routines. The amount of RAD space allo-

cated for the TVECT file depends on the maximum number of
DEFs in the Public Library, which is a SYSGEN input.

The final program output to the System Processor area of the
RAD will be a copy of the RBM bootstrap that goes into the
BOOT file. There is no file header for the bootstrap, and
the bootstrap is always restricted to one sector. It is neces-
sary to define the bootstrap as a file, so that it can be ac-
cessed for output during a RAD save or dump operation.
After the bootstrap is written onto the BOOTfile, it is writ-
ten onto relative sector zero of the system RAD, from where
it can be bootstrapped into core. Also, a copy of the RAD
bootstrap may be output to the foreground BO device, which
enables the user to start RBM on any sector of the RAD or to
boot from a disk pack. If the user chooses to start RBM at
any sector other than sector zero, he can still reboot RBM by
loading the RAD bootstrap that was punched on the BO device.

The next output to the RAD will be the RBM Symbol Table
(a file in the System Data area) and the System Data Area
Dictionary. The System Data Area Dictionary has the same
format as the System Processor Dictionary and contains the
following files:

File Name Description

RBMGO Object module storage for "assemble and
go" operations.

RBMOV Nonpermanent storage for programs to be

executed.

File Name Description

RBMS2 Storage for Extended Symbol standard
procedures.

RBMSYM RBM Symbol Table of Monitor service
routines.

RBMPMD RAD area used by postmortem dump.

RBMID Holds IDNT origins for Debug.

RBMAL Used by the accounting routine.

If a user accepts the default allocation for the RBMGO,
RBMOV, RBMAL, RBMID, RBMS2, and RBMPMD files, no
modifications via the RAD Editor have to be made for
these files.

The RBM Symbol Table contains the definitions (DEFs) for the
Monitor service routines. These DEFs are needed by the
Overlay Loader at load time to satisfy any reference to the
Monitor service routines. The first word of the table con-
tains the number of bytes in the table, followed by seven

words per entry, in the same format as in the Overlay
Loader Symbol Table,

After the System Load Processor completes its writing of the
system data area, it moves the RAD bootstrap to memory
locations 0 through 63 and transfers control to the bootstrap.
Then the bootstrap goes through its normal loading proce-
dure (described later in this chapter in "Initial Loading of
System Processors").

UPD OPTION (UPDATE)

The UPD option on the SYSLOAD command specifies that a
new version of RBM has been made, but that none of the
areas on the RAD have changed in size. The option can
also be used when changes are made in any of the following
input parameters:

e Public Library (PL) FWA

e Resident Foreground FWA

e Nonresident Foreground FWA
e Background FWA

UPD should not be used if any of the RAD areas has changed
in size or location. In this case, a complete SYSGEN and
SYSLOAD must be performed. Note that a change in the
background FWA to increase the total size of background
might cause a change in size of the Checkpoint area, which
could necessitate a complete new SYSGEN. In this case, a
CP AREA TOO SMALL al arm would be output for the user's
information,

The System Load Processor reads the bootstrap to determine
where the old version of the RBM is located on the RAD and
then loads the Monitor Constant Table. The SLP then com-
pares the old load addresses against the new load addresses
to determine which programs on the RAD must be reloaded.

SYSLOAD 131

The size of the new Master Dictionary must be at least as
large as the old Master Dictionary, If it is not, an error
message will be output and SLP will continue

If the new version of RBM exceeds the RAD space allocated
to the old version, all programs in the System Processor area
and all programs that make external references to Monitor
service routines (MSR) must be reloaded. (Reloading the
System Processor area is necessary because the RBM is the
first file in the area.) As the comparison checks are made,
a subset of the following messages will be typed on OC:

1IRELOAD
PUB. LIB.
RES. FGD.
NONRES. FGD.
BCKG.
SP AREA
MSR/PL USERS AND PL
NOTHING

If any of the following modules are relocated on the RAD,
the contents of other affected areas must be reloaded:

Relocated Module Required Reloading

Public Library requires All programs that reference the

reloading because its Public Library must also be re-

load address has loaded. None of the system

changed. processors use the Public Library,
and no system processors would
have to be reloaded.

Resident or nonresident The appropriate routines must be
foreground was reloaded in these areas.
relocated.

All system processor and back-
ground user programs must be
reloaded. (See "Initial Loading
of System Processors" below.)

Background was
relocated.

New RBM version ex- All programs in the system pro-

ceeds its allocated cessor area must be reloaded.

RAD file space. (See "Initial Loading of System
Processors" below.)f

TVECT Table load All programs referencing Monitor

address has chqnged." service routines (MSR) or the
Public Library (PL) through the
TVECT Table via an external
reference must be relocated.

t

The only areas of the RAD that would never have to be re-
loaded are the system and user library areas since these
areas contain library programs in relocatable binary format.

M rhe TVECT load address will change any time the first
word address of the area adjacent to RBM in core has
changed.

132 SYSLOAD

After these checks are made, The SLP outputs the message
11LOAD RBM PART 2

and proceeds to load the overlays as described earlier in
the "ALL Option".

After the overlays are loaded, another check is made to see
if the overlays did not overflow RBM. If the overlays did
overflow into the next area, the following message is output:

VIRELOAD
SP AREA

After the necessary RELOAD alarms are output for the user's
information, the SLP will load the Master Dictionary from
the RAD version of RBM and store it into its allocated area
in the new version of RBM. The new version of RBM will
then be written onto the RBM file, followed by an updated
bootstrap in the BOOT file, the starting sector of the system
RAD, and the PM device. Finally, the Transfer Vector
Table and the RBM Symtol Table will be updated and then
rewritten on the RAD,

INITIAL LOADING OF SYSTEM PROCESSORS

For a complete system load, the first processor that is loaded
must be the Overlay Loader. The Overlay Loader is coded
in a self-relativizing format and is loaded by the RBM Abso-
lute Loader., An entry in the System Processor Dictionary
for the Overlay Loader will be made at SYSLOAD time.

The object module of the Overlay Loader will be loaded
from the Aldevice and written into its assigned file. The user
must precede the loading of the Overlay Loader with an SY
key~-in and an 'ASSIGN OV=OLOAD, SP control command.

After the Overlay Loader has been loaded onto its perman-
ent file, it is available to load a relocatable binary deck of
the RAD Editor onto the RBMOV file of the RAD. The RAD
Editor is then executed via an IXEQ command and makes an
entry for itself in the System Processor area by means of an
1#ADD control command. It then should be copied onto its
defined file. At this point, the System Processor area of
the RAD contains the Overlay Loader and the RAD Editor,
which are the only processors needed to complete the load-
ing of other programs.

PUBLIC LIBRARY CREATION OR UPDATING

The Public Library can be created after the Overlay Loader
and RAD Editor have been loaded and thereafter can be com-
pletely regenerated any time the user desires. A file with
the name PUBLIB will have to be defined via the RAD Editor
in the User Processor area for the Public Library, and a file
named LIBSYM must be defined in the System Data area of
the RAD. The relocatable binary decks of all routines to be
specified as being in the Public Library are loaded by the
Overlay Loader (via the ! $PUBLIB confrol command) and an
absolute core image version is written by the Overlay Loader
on the RAD file defined as PUBLIB, Before executing the
Overlay Loader, the operator must key in SY so that the
Loader can write in a protected RAD file.

When a Public Library is successfully loaded, additional up-
dating of RAD files will be done by the Overlay Loader.
The Public Library Transfer Vector Table will be input from
the RAD and either created (for an initial load) or updated
for succeeding loads, This process consists of linking each
Public Library definition (DEF) in the Symbol Table to a
transfer vector, and linking the transfer vector to the value
of the DEF. When the linkage is completed, the Overlay
Loader writes the new Public Library Symbol Table into a
previously defined file (called LIBSYM) in the system data
area of RAD. For an initial load, this file will be previ-
ously defined, via the RAD Editor, with the name LIBSYM,
The new Transfer Vector Table is then written on the RAD (re-
placing the previous one), and the Loader exits to M:TERM,
(Note that RBM must be rebooted from the RAD in order to
load the Public Library into core memory.) The Public
Library should not be loaded into core (by rebooting the
system from the RAD) until the user has reloaded all fore-
ground and background routines that use the Library.

RESIDENT FOREGROUND CREATION OR UPDATING

In an initial load the resident foreground files must be de-
fined via the RAD Editor, These files must be in the User
Processor area (UP) of the RAD, Also, the parameter on
the 1#ADD command specifying that this is a resident fore-
ground file will have to be set. One RAD file can be de-
fined for each foreground program, thus allowing an update
to be done on a program basis as opposed to the entire resi-
dent foreground area. On an initial load the Overlay
Loader reads in a relocatable binary deck of each fore-
ground program, and creates an absolute core image version
of the program in its predefined RAD file. Foreground pro-
grams assembled as absolute sections must be loaded with an
ABS control command. Prior to executing the Overlay
Loader, the user may key in SY to specify that the protected
RAD files can be written on,

For an update, only those programs being modified need be
reloaded. However, if a program exceeds its allocated core
space, other programs must be reloaded and relocated at a
new absolute address in a different area of core.

The Overlay Loader (or the Absolute Loader) will store in
the first sector of each file the appropriate header informa-
tion that the RBM bootstrap needs to load and initialize each
foreground program, The information needed by the boot-
strap consists of the following items:

1. Load address,
2. Number of bytes in program.
3. Entry address of initialization routine (if present),

If no initialization routine is specified, the RBM bootstrap
will initialize the task's interrupt level from information in
the TCB. The task may also be triggered at this point if the
TCB so specifies.,

After the resident foreground is loaded on the RAD, it
is brought into core by manually rebooting the system
from the RAD. It can also be brought into memory by
inputting a lprocessor or ! XEQ command with OV assigned
to its RAD file.

When core is reloaded from the RAD, all newly loaded
Public Library and/or resident foreground programs will be
loaded and executed, if appropriate (see the description of
the RAD bootstrap process at the end of this chapter).

When it is desired to test a new version of a resident fore-
ground program in core before it becomes permanent on the
RAD, it can be loaded and executed from the RBMOV file.
After the program has been tested, it can be loaded perma-
nently on the RAD using the previously described procedure.

NONRESIDENT FOREGROUND CREATION OR UPDATING

Nonresident foreground programs can be created or updated
in their predefined RAD files at any time. The Overlay
Loader will read in relocatable binary decks of the nonresi-
dent foreground programs, convert their addresses to absolute
form, and write them into their defined files, The nonresi-
dent foreground files will be located in the user processor
area of the RAD, and the definition of the files will be
accomplished by the commands to the RAD Editor,

SYSTEM PROCESSOR AND LIBRARY CREATION

The system processors (Extended Symbol, Rad Editor, Basic
FORTRAN 1V, Concordance, and Utilities) can be loaded
or updated by the Overlay Loader from relocatable binary
decks. These processors will have their address converted
to the absolute locations appropriate for the background
area and will be written onto their predefined files in the
system processor area. Any processor can then be executed
by input of the appropriate Ixxx command (where xxx is the
file name of the processor),

The System Library will be input in relocatable binary form
by the RAD Editor and written in relocatable binary form
onto the system library area of the RAD. The construction

of several dictionaries in the system library is performed by
the RAD Editor.

SYSLOAD ALARMS

In addition to the RELOAD alarms listed previously and
those concerned with loading RBM Part 2, the alarms given
in Table 30 can be generated and are unique to SYSLOAD,

REBOOTING THE SYSTEM FROM RAD

The system can be rebooted from the RAD by manually
causing sector zero of the system RAD to be loaded, or by
reading in the RAD bootstrap previously punched on the
BO device. The RAD bootstrap will initially move itself
to high core and then read in RBM from the system pro-
cessor area of the RAD, The information necessary to read
in RBM is contained in the last cells of the bootstrap and
is supplied by SYSLOAD when the bootstrap is written on
the RAD or punched out. After the resident portion of RBM
is loaded, control is transferred to another bootstrap that
loads the remainder of the RAD. This bootstrap functions in
the overlay region of the RBM,

SYSLOAD 133

Table 30.

SYSLOAD Alarms

Message

Meaning

Recovery

CP AREA TOO SMALL

The size of background has changed
and/or RAD area allocated for a
checkpoint is too small.

To perform checkpoint, SYSLOAD will have
to be rerun using the ALL option.

INVALID PARAMETER

An invalid input has been made to the
INPUT OPTION request.

Retype either ALL or UPD.

UNPROTECT RAD

One of the write-protect switches has
been set on the RAD for an area that
SYSLOAD is attempting to modify.

Remove the write protection for the appro-
priate area.

EOT ON SP AREA

An end-of-tape status has been re-
turned while writing on the SP area.
Not enough room has been allocated
for the SP area.

A new SYSGEN will have to be run with an

increase in the SP area.

EOT ON SD AREA

Same as for SP, except the SD area has
overflowed.

Same as for SP.

RDdn FAULT

A nonexistent address has been given

Check RAD allocation parameters in

for a seek operation.

SYSGEN for allocation of more tracks than
exist on this RAD. Repeat SYSGEN and/or
SYSLOAD as necessary.

MASTER DICTIONARY
OVFLOW

Version of RBM on RAD has a larger
Master Dictionary than new version.

Last areas of old dictionary were lost. A new

SYSGEN may be necessary.

ALT. TRK. POOL OVFLOW

Too many bad tracks were encountered
during the SYSLOAD process.

Some bad tracks will not be in the Alternate
Track Pool. A new SYSGEN may be

necessary.

The second bootstrap initially inputs the Transfer Vector
Table to complete the loading of the resident portion of
RBM. Next, an attempt is made to assign an operational
label to the PUBLIB file in the user processor area. If a
Public Library is present, the assignment will be made,
and the bootstrap then inputs the Public Library. The
bootstrap then searches the User Processor Dictionary for
all files flagged as a resident foreground file. All such
files are input, one file at a time, and an inialization
routine is executed if one exists. The initialization routine
can do any required housekeeping (such as repositioning all
appropriate files), arm and enable the appropriate interrupts,
and then return control to the bootstrap. The initialization
routine is linked to via the following instruction:

RCPYI P,L

It then expects to have control returned to the address in the
L register. Hence, the bootstrap will read in the resident
foreground programs, one by one, and execute any initiali-
zation routine. A provision is made to reboot the system
without loading resident foreground. This is accomplished
by setting all data keys to =1 just before clearing the
"wait" state entered by the initial RAD bootstrap.

134 SYSLOAD

The system is then completely rebooted and the bootstrap
sets the protection registers, outputs the following messages,
and enters a "wait" state.

ITAFTER '"WAIT' SET PROTECT 'ON!
IISET PARITY TO 'INT.!
THINT. AND KEY IN 'S* TO BEGIN

If the computer enters a "wait" state before the above
messages are output, the bootsirap was not successful in
loading the required data. This would usually be caused
either by a parity error while reading the RAD or by a
faulty foreground program.

The above messages may be inhibited by setting DATA
switch No. 2 prior to execution of the bootstrap. The
indicated operations must still be performed, however.

The loading of resident foreground can be inhibited by
entering -1 in the data switches before executing the
initial bootstrap.

12.

INTRODUCTION

This chapter describes the use of Debug and its interface
with RBM.

GENERAL DESCRIPTION

The RBM Debug package is a debugging tool primarily de-
signed for nonoverlaid background programs, with limited
facility for foreground programs. It provides the user with
the following capabilities:

1. To transfer control to the control device from a speci-
fied location in the user's program or through the Con-
trol Panel Interrupt.

2. To dump selected core and registers on the keyboard/
printer or the line printer.

3. To modify memory locations and registers.
4. To logically insert code at specified memory locations.

5. To begin or continue execution at a specified memory
location (i.e., selective execution).

6. To perform conditional memory dumps (snapshots) of
registers and selected core locations at a specified
location and optionally transfer control to the con-
trol device.

7. To step through a program.
FOREGROUND USER'S DEBUG CAPABILITY

Debug can be used to aid the checkout of a foreground
program operating at priority levels lower than the Con-
trol Panel Interrupt level. In this case Debug must be
assigned to an interrupt level higher than any level as-
signed to the tasks being checked out. During real-time
foreground program debugging, no background program
may be executed and the background space can be used
as an insertion area. The foreground user is able to force
an unusual exit from the highest active interrupt level
below Debug.

OVERLAY USER RESTRICTIONS

When a snapshot is inserted in a currently resident seg-
ment using a Debug control command, the snapshot is
valid only until the segment is overlaid, since Debug
operates only at execution time on resident programs.
This problem is reduced by allowing the user to assem-
ble Debug calls into his program.

DEBUG

RBM AND FOREGROUND USER'’S INTERFACE

Debug is a subtask of the RBM Control Task with a priority
just below the IDLE subtask. Debug is triggered by any of
the three resident Monitor routines (D:SNAP, D:KEY, or
D:CARD), by the KEYIN subtask, or by the Job Control
Processor (JCP). JCP triggers Debug when it receives an
XED command, and the system loader transfers control via
D:KEY. When a foreground user wishes to use Debug, he
gives control to Debug by an IXED card or by an unsoli-
cited key-in of DE. After Debug has control, the fore-
ground user defines an interrupt level for subsequent Debug
use. At this time Debug saves the RBM group code
(R:RBMWD) and the register bit (R:RBMB), replaces them
with the computed user's group code and register bit, inhi-
bits interrupts, triggers the new Debug level, and exits (re-
setting inhibit bits) from RBM. The RBM Control Task is
now operating at a level where Debug can affect the fore-
ground user's program. After debugging, the foreground
user issues the Debug command Q which restores the RBM
Control Task to its original level.

MEMORY REQUIREMENT AND INSERTION
BLOCK DEFINITION

The executive portion of Debug is a foreground program that
may be resident or nonresident. If the program is resident,
it must be so specified when the Debug file is created with
the RAD Editor. It is read into core when RBM is booted.

If the program is nonresident, it is loaded like any other
foreground program (see Chapter 6). Debug has the fol-
lowing core memory requirements:

1. Executive 440 locations

2., Zero table 35 locations
3. Overlays RBM overlay space
4, Insertion block User-defined

The insertion block is an area of core that stores user-
inserted code, and the zero table cells are used to refer-
ence these insertions (see Appendix B).

DEBUG CONTROL

Control can be given to Debug in the following ways:
1. Adirect call to Debug.

2. The execution of a snapshot.

3. Anunsolicited key-in of DE.

4. The Debug execution card (1XED).

A direct call on Debug is a user—coded request for Debug to
read a command. The call has the form

RCPYI P,A
B D:KEY or D:CARD

Debug 135

When the entry is D:KEY, Debug prints the message

HDKEYIN

A Debug command will then be read from the proper device-
file number assigned at SYSGEN.

Note thatafter the initial direct call on Debug a foreground
task will have to exit in order to move Debug to a higher
interrupt.

D:KEY, D:CARD, D:SNAP (snapshot) are small reentrant
routines that actually trigger Debug. An unsolicited key-in
during Debug will not harm the user's environment; and if

a dump was in progress, the key=in will be honored after
the current line is output. The !XED command performs the
same function as the IXEQ command except that Debug is
called via D:KEY before executing the user's program.

DEBUG COMMANDS

After Debug has control, it interprets the following
commands:

Code Function

D Define

—

Logically insert code
Insert snapshot
Step (move) snapshot

Remove snapshot or insertion

—- ™ X On

Perform selective dump on keyboard/
printer and Debug output device

P Perform selective dump on Debug output
device

Set Debug input device to the card reader

~

Set Debug input device to the keyboard/
printer

Modify memory
Branch (i.e., return control to program)

Exit from interrupt level

OH’\UJZ

Terminate Debug

Debug uses M:READ and M:WRITE for input/output; and
hence the keyboard character NEW LINE terminates a line,
EOM deletes a line, and cent (¢) deletes the previous
character. Debug interprets the semicolon character (;)

(if not in the message field of a snapshot) as a continua-
tion character. The semicolon will terminate the line (or
card and continue the command to the next line (or card).
Blanks are ignored except within the message field of a
snapshot.

136 Debug Commands

Most Debug commands specify registers and memory loca-
tions. Registers are specified as follows:

RP Program address register

RL Link address register

RT Temporary register

RB Base address register

RX Index register

RE Extended accumulator

RA Accumulator

RR All of the above

Locations are specified in one of the following forms:

1. One to four hexadecimal digits.

2. SNAME, where NAME is an IDNT and its value is the
load origin of such module. The Overlay Loader D
option must be invoked if the user is to use IDNT names
with Debug.

3. Sums or differences of values of either of the above two
forms.

Examples:

Al4

$SQRT
ABC+$SUB1+1492
SSUBT - $SUB2

If the SNAME option is invoked, the user must define an in-
sertion block (see the Debug Define command, below), and
the last 180 words of the insertion block are used as a buffer
for the IDNT names.

D (Define)
The Define command is used to define an insertion block
when the Debug commands S or I or the SNAME option is to

be used.

The form of the Define command is

D [start, end] [,level]

where

start is the memory location of the first cell of the
insertion block.

end is the memory location of the last cell of the
insertion block.

level specifies the memory location of the hardware
interrupt level if Debug is to be used for foreground.
The default level is the RBM Control Task level.
An unsolicited key—in of FG must be in effect when
the level is specified.

| (Insert)
The Insert command designates the insertion of one or more
instructions logically before (IB), after (IA), or replacing

(IR) the instruction at the designated location (loc).

The form of the Insert command is

IB
IA} loc, inst],...,insfn
IR

where
IB designates Insert Before
IA designates Insert After
IR designates Insert Replace

The instructions may be designated in one of the following
forms:

1. op*loc

where op isatwo-digit hexadecimal value representing
the operation code and address modification. The sec-
ond digit (i.e., address modification) must be one of
the following:

0 designating direct addressing

2 designating indexing

4 designating indirect addressing

6 designating indirect addressing and indexing

This instruction form relieves the user of creating the
actual address structure for Sigma 2/3. It does not apply
to the conditional branch instruction (operation code
6) nor to the register copy instructions (operation
code 7). Debug will actually expand an instruction
designated in this form into more than one instruction;
for example, 82*1492 will expand into

8E02 LDA *$+2, 1
4802 B $+2
1492 DATA X'1492"

See Appendix J for a description of the expansions.
2. éx*loc

where x designates the desired conditional branch;
for example, 6E*1492 designates a BAN 1492 and will
expand into

6E02 BAN $+2

4803 B $+3
4C01 B *$+1
1492 DATA X'1492'

See Appendix J for a description of the expansions.

3. hex value
which is inserted with no expansion,
4. Any mnemonic copy instruction in the Sigma 2 and

Sigma 3 Computer Reference Manuals, The comma
between the register specifications must be omitted.

The results of an insertion are defined in Appendix N.
An example of the insert command is as follows:

IB SSUB+1000, 80*SSUB+25, 75A1, 40*SSQRT+0, ;
RCPYIPL, ROR*LT,REOR XB

S (Insert Snapshot)

The Insert Snapshot command inserts (in the same manner as
the instruction Insert Before) a snapshot at the designated

location so that when control passes through loc, the fol-
lowing transpires prior to executing the instruction that was
at loc:

1. The optional conditions are evaluated, and if false,
the snapshot is bypassed.

2. If the conditions are true (or if none are specified), the
following is output:

SNAP AT loc
message (if any)
followed by the designated dumps.

Such output is always transmitted to the Debug output de-
vice; and if any of the dumps designate the keyboard/

printer, then the SNAP and the message line also will be
transmitted to the keyboard/printer. A user can make a
maximum of 32 snapshot and instruction insertions. (See Ap-
pendix L for the calling sequence for a Snapshot command.)

The form of the Insert Snapshot command is

S
lSK’ loc [/conditions/] ['message'] [,dump requests]
SS

where
S is a request to snapshot and resume execution.
SK is a request to snapshot and transfer control to

the keyboard/printer for Debug input.

SS is the same as SK, but may be stepped (see
Debug command X.)

conditions
message
dump requests

are as described below.

Debug Commands 137

Conditions. The format of the conditions is

'1{?] '2{?} 3 {%} "n

where r, is a relational expression of the form
!

loc = loc
<

constant [*] > constant
<<=
>=

register <> register

where constant is the same form as a loc preceded by a #;
for example,

#1492 or #$SUB+57

The meaning of the operations in hierarchical order are
as follows:
= equal
< less than
greater than
<= less than or equal to
>= greater than or equal to
<> not equal
logical and
I logical or

The comparison is arithmetic unless the operator is preceded
by an asterisk (*), in which case the comparison is logical.

Message. Message is a string of any EBCDIC characters ex-
cept quote (').

Dump Requests. The format of the dump requests (if any) is

register register
[T] loc 'y [T] loc
loc ... loc loc ... loc

where T designates a particular dump to be output on both
the keyboard/printer and the Debug output device. If T is
absent, the dump will be output to the Debug output device
only. Only one dot (.) is necessary in specifying a block
of memory locations. Extra dots are ignored.

An example of the snapshot command is as follows:

SSSUB+505/RA=# 081492<1496/'TAB1 FULL',
STABI...$TAB1+256, RR

X (Step Snapshot)

If control is at the Debug input device as a result of a
stepping snapshot (SS), the X command moves the snapshot

138 Debug Commands

to memory location n, keeping the same conditions, mes-
sage, and dump requests. Control is then transferred to the
branch location.

The form of the Step Snapshot command is

X [n [,branch]]

where
n is the memory location.
branch is the branch location.

If the snapshot was executed at location ALPHA, the de-
fault cases are branch = ALPHA and n = ALPHA+I,

R (Remove Snapshot or Insertion)

The Remove command restores the displaced instruction to its
original memory location. The commandreleases the zero table
entry and, if the entry is the latest snap or insertion, re-
leases its space in the insertion block. Note that the space
in the insertion block is regained only if the Remove com-
mand affected the latest entry in the insertion block.

The form of the Remove command is

(? |oc] [, |oc2,..., Iocn]

where loc is the memory location.

T (Selective Dump on the Keyboard/Printer and the
Debug Output Device)

The T command outputs the contents of the requested loca-
tions and registers in hexadecimal on both the keyboard/
printer and the Debug output device. Console interrupt
will transfer control to the keyboard/printer after the cur-
rent line is output.

The form of the T command is

T dumps

where dumps (i. e., dump requests) have the following forms
(there can be several dump requests in any order separated
by commas):

loc $SUB+3

loc ... loc $SUB ... 3FFF

register RA

all registers RR

P (Selective Dumps on the Debug Output Device)

This command is identical to the Tcommand except that the
dumps go only to the Debug output device.

The form of the P command is

P dumps

c (Debug Input Device)
The C command gives control to the Debug input device.

The form of the C command is

C

K (Keyboard/Printer)
The K command gives control to the keyboard/printer.

The form of the K command is

K

M {Modify Memory)
The M command modifies memory locations or registers.

The form of this command may be either of the following:

M register,word

MH?}] loc, wordo, ... ,wordn

where

loc is the first memory location to modify.

word; is the hexadecimal value (or mnemonic reg-
ister operation; see item 4 under the Debug |
command) to be stored in the designated register
or at location loc+i.

P if present, is a request to print the hexadecimal
value of the effective location, its previous value,
and its new value.

T if present, is a request to type the hexadecimal

value of the effective location, itsprevious value,
and its new value.

Examples of the M command are

1. MSSUB+I, 4, 1, SSUB+2, RADDIZE

where the following cells are modified if SUB is fo-
cated at 100]6:

Loc Value
0101 0004
0102 0001
0103 0102
0104 7C68

2. MRA, SSUB

This sets the A register to 0100. Note that an MRP
command will change the program address portion of
the program status doubleword.

3. MT 149A, RCPYIPA

This will produce the following output if the contents
of location 149A was FFFF prior to the command
149A: FFFF —75F1,

B (Branch)

The Branch command allows the user to insert loc into the
program address portion of the program status doubleword
and to exit from Debug. If loc is not present, the user just
exits from Debug.

The form of the Branch command is

B [loc]

E (Exit From Interrupt Level)

The E command allows the user to force an unusual exit from
the highest active interrupt level below Debug. Debug will
still have control after this command.

The form of the E command is

E

Q (Quit Debug)

The Q command causes Debug to reset its internal flags and
zero table cells, restore RBM's original interrupt level,
trigger the Job Control Processor, and exit. If the X option
is present, Debug will also disconnect (i.e., unload) itself
from the system.

The form of the Q command is

Q [X]

Debug Commands 139

DEBUG ERROR MESSAGES

Error messages are shown below:

Message Meaning
ERROR SYNTAX Syntax error

ERROR COMMAND Command error

ERROR FOREGRND Command attempts to affect
foreground without a hard-
ware interrupt level specified
for Debug (see Debug D
command)

140 Debug Error Messages

Message Meaning

ERROR OVERFLOW Either insertion block or zero
table overflow

ERROR IN/OUT Input/output error

When Debug encounters an error, it aborts a background job
if there is no 1ATTEND card. Otherwise it requests further
commands from the keyboard/printer. At this time, Debug
will not have modified the environment, allowing the user
to attempt recovery. (It is assumed that the user will respec-
ify any erroneous commands.)

A KEYIN error message issued as the result of an unsolicited
key-in of DE, or an abort code of DE issued as the result of

a direct call on Debug, implies that Debug is not part of the
system. This can be corrected by queuing in Debug (i.e.,

an unsolicited key-in of Q DEBUG).

APPENDIX A. SIGMA 2/3 STANDARD OBJECT LANGUAGE

INTRODUCTION

The XDS Sigma 2/3 standard object language provides ameans
of expressing the output of a processor in a standard format.
All programs and subprograms in this object format can be
loaded by the XDS Sigma 2/3 Overlay Loader. The complete
standard object language contains 15 load item types.

An object module consists of the ordered set of binary rec-
ords generated by an assembly or compilation for later load-
ing. The Overlay Loader has the facility to load and
link several object modules together to form an executa-
ble program,

The Sigma 2/3RBM System Absolute Loader can load a single
module (absolute subset) to form an executable program.
The following load item types from the standard object fan-
guage comprise the absolute subset:

Record Header

Record Padding (type O, subtype 0)
Repeat Load (type O, subtype 1)
Unrelocated Load (type 1)

Start Module (type 4)

End Module (type 5)

Load Origin (type 7)

NGO AW~

This subset is acceptable input to the resident RBM Absolute
Loader and Overlay Loader.

DESCRIPTION OF OBJECT MODULES

GENERAL DESCRIPTICN

An object module consists of a set of binary object records,
each containing an integral number of load items after a
standard three-word record header (see Figure A-1). Each
binary record in the module is a 120-byte record.

FF n
Seq. No, 1

Checksum

Load Items First Record

Nonactive
Information

FF n
Seq. No. 1

Checksum

Load Items Second Record

Nonactive
Information

Figure A-1. Typical Object Module of M Records

FF n
Seq. No. M-2
Checksum

Load Items (M-1)th Record

Nonactive
Information

9F n
Seq. No. M-1
Checksum

Load Items Mth Record (Last record of module)

Nonactive
Information

Figure A-1. Typical Object Module of M Records (cont.)

Each load item consists of a header word followed by a
variable number of data words. The first load item in an
object module is a start-module item and the last item (other
than record padding) is an end-module item. There are 15
types of load items, described below.

BINARY O0BJECT RECORD FORMAT

Each 120-byte binary record in an object module consists of
these parts: Record Header, Load Items, and Nonactive In-
formation in the following arrangement. The Record Header
and Load Items are considered the "active" portion of the
record.

Record Header 3 words

Load Item 1
Load Item 2

> upto 51 words

Load Item n J

Nonactive
Information

The "active" portion of the record is that information con-
cerning type, sequence number, checksum and binary data
usually processed by loaders. The "nonactive" portion may
contain sequence or identification information, or it may be
empty. It is not processed by the loaders.

Appendix A 141

FORMAT OF RECORD HEADER

The first byte of the record header may be either X'F* or
X'9'. X'F' denotes that this is a standard record of the ob-
ject module: X'9' denotes that this is the last record of the
object module.

word 0

Control word
For9 | F [0 0 n nn n n n

0 3 4 7 8 9 10 1112 131415
word 1
S|1C Record sequence no.
0o 1 2 15
word 2

Checksum
0 15

nnnnnn in the first word is the number of active words in the
record, excluding the record header. "Active" denotes data
to be processed by a loader. There may be some padding
words or sequence information at the end of the record that
is not included in the "active" count. The maximum value
of nis 51. Note that although the physical record size is
fixed at 120 bytes (80 columns of binary data) the number of
active words may vary from 3 to 54. This effectively stan-
dardizes the reading of binary object records but allows ver-
satility in the generation of activedata. The record sequence
number starts at 0 and fakes on consecutive integer values
for all the records in one file. The S bit is a sequence over-
ride. If this is a 1, the loader ignores sequence checking
for the record. The checksum is an arithmetic sum, with
carry, of the n-3 active words after the record header. If
the C bit is a 1, the checksum is ignored.

LOAD ITEM FORMAT

Each load item consists of a one-word header and an op-
tional variable-length body of data.

Load Item Header
Load Item

Load Item Data

FORMAT OF LOAD ITEM CONTROL (Header) WORD

Every header word has the same general format:
bits 0-3 Type.
bits 4-7

bits 8-15 Number of data words in the load item (ex~
- cluding item header).

Subtype or control.

This number plus 1is equal to the size of the
load item. All words of a load item must be
contained in the same physical record.

142 Appendix A

SUMMARY OF LOAD ITEM FORMATS
RECORD PADDING (Type O, Subtype 0)

word 0

Control word
0 0 00[oo0 0 0Jo 0 00J0o 00O
0 3 4 7 8 T 12 15

There is no body of data. Padding words are ignored by the
loader. The object language allows padding as a conve-
nience for processors.

REPEAT LOAD (Type 0, Subtype 1)

word 0

Control word
0 0 0 0[]0 0 0 1fo 0 0 0[O0 O O 1
0 3 4 7 8 T 12 15

word 1

Repeat count

0 15
This item repeats the next load item a specified number of
times. The load item (type 1, 2, or 3 only) immediately

following the repeat load is repeated (i.e., loaded) in its
entirety the number of times indicated by the data word.

UNRELOCATED LOAD (Type 1)

word 0

Control word
0 0 0 1]0 0 0 0[]0 0 n nfn n n n
0 3 4 7 8 17 12 15

word 1

First data word

word n

Last data word

0 15

This item loads n words without relocation.

RELOCATED LOAD-MODULE BASE (Type 2)

word 0

Control word
0 0 1 0[0 0 0 0J0O 0 n nfnn nn
0 3 4 7 8 T 12 15

word 1
First data word
0 15
word n
Last data word
0 15

This item loads n words with module relocation. The reloca-
tion bias of the current object module is added to each data
word in the item.

RELOCATED LOAD-COMMON BASE (Type 3)

word 0

Control word
0 0 1T 1{0 0 0 0|0 O n n|ln n n n
0 3 4 7 8 1T 12 15

word 1

First data word

word n

Last data word

0 15

This item loads n words with a common base relocation.

START MODULE (Type 4)

word 0
Control word

O]OOIOOOO[n+1

0 3 4 7 8 15
word 1

Common size allocation

0 15
word 2

First character | Second character

0 7 8 15
word n + 1
(2n-1)th character | Last character (or blank)
0 7 8 15

This item identifies the start of the object module. The
characters in words 2 through n + 1 are the program name
(identification) for the module.

END MODULE (Type 5)

word 0

Control word

0 1 0 1[0 0 0 rf0O 0 0 0[O0 0 1 1

0 3 4 7 8 11 12 15

word 1

Starting address

word 2

Severity level

word 3

Relocatable size (or zero)

0 15

This item identifies the end of the object module. In the
control word (word 0), the starting address is defined in

bit 7

where

r =1 indicates absolute starting address.
r =0 indicates relocatable starting address.

The severity level in word 2 is defined as the highest level
reached during processing.

The loader uses the relocatable section size, if present, rather
than its own location counter to determine the starting loca-

tion for the next relocatable section.

A starting address of absolute 0 indicates there is no starting
address for this module.

LOAD ORIGIN (Type 7)

word 0

Control word
0 1 1 1[/o0 0 rJoO 0 0 0[]0 0 0 1
0 3 4 7 8 12 15

Origin address

0 15

This item sets the origin within the object module. In the
control word (word 0), the origin is defined in bit 7

where

r =0 indicates relocatable origin.
r =1 indicates absolute origin.

Appendix B 143

RELATIVE LOCATION POINTER (Type 8)

word 1

First data word definition — address

word 0
Control word 0 15
1 0 00[{0 0 O /O O O 0[O0 0 0 1
0 3 4 7 8 11 12 15 word 2
First character | Second character
word 1
Chain base address 0 7 8 15
0 15 word n + 1
This item establishes the chain base for later chain resolu- (2n-1)th character | Last character or blanks
tion. In the control word (word 0), the chain base address
is defined in bit 7 0 7 8 15

where

r =0 indicates a relocatable address.
r=1 indicates an dbsolute address.

NAME DEFINITION (Type 9)

This item associates a location in the module with a defini-
tion name (characters in words 2 through n + 1) for other
modules to reference. In the control word (word 0), the
definition address is defined in bit 7

where

r =0 indicates relocatable definition address.
r =1 indicates absolute definition address.

word 0
Control word EXTERNAL REFERENCE (Type A)
1 0 0 1Jo 0 1 0] n+ 1
0 3 4 7 8 15 word 0
gl Control word
wor 1 0 1 0[0 0 0 r] n+1
First data word 0 3 4 7 8 15
0 15 word 1
Chain address (or zero)
word 2
First character | Second character 0 15
0 7 8 15 word 2
First character | Second character
word n + 1
1
(2n-1th character | Last character (or blank) 0 7 . 8 3
0 15 word n + 1

This item identifies a name as a definition within the object
module.

All name definitions immediately follow the start-module
item and must precede all other load items. For each name
definition, an address definition should appear later in the
object module.

ADDRESS DEFINITION (Type 9)

(2n-1Dth character [Last character (or blank)

0 7 8 15
This item states a name (characters in words 2 through n+1),
defined in another module, whose definition address must be
inserted in a chain of locations within the module. In the
control word (word 0), the chain address is defined in bit 7

where

r =0 indicates a relocatable chain address.
r =1 indicates an absolute chain address.

Note: If there is no chain address, the reference address is

word 0
Control word
T 0 0 10 0 0 r | n+ 1
0 3 4 7 8 15

144 Appendix A

zero and is used for library searching purposes only.

SECONDARY REFERENCE (Type B)

word 0
Control word
1 0 1 1J/0 0 0 r] n+ 1
0 3 4 7 8 15~
word 1
First data word chain address
0 15
word 2

First character | Second character

word n + 1

(2n-1)th character | Last character (or blank)

0 7 8 15

This item states a name (characters in words 2 through n+1),
defined in another module, whose address may be inserted

in a chain of locations within the module, This item is iden-
tical to type A, above, except that it does not force foading
of the routine from the library. In the control word, the
chain address is defined in bit 7

where

r =0 indicates a relocatable chain address.
r =1 indicates an absolute chain address.

ADDRESS LITERAL CHAIN RESOLUTION (Type C, sub-
types 0, 1, 2, and 3)

word 0

Control word
1 1 00[/00 q r[0 0000 O0T1O
0 3 4 7 8 15

word 1

Reselution address

word 2

Chain address

0 15

This item defines a location within the module (called the
resolution address) whose address must be inserted in a chain
of displacement fields within the module. In the control
word, the chain address is defined in bit 6

where

q =0 indicates a relocatable chain address.
q =1 indicates an absolute chain address.

The resolution address is defined in bit 7
where

r =0 indicates a relocatable resolution address.
r =1 indicates an absolute resolution address.

An address literal chain is a threaded list of forward refer-
ences fo a single location in a program. The definition
value (called the resolution address) can be output as an
address literal chain resolution (Type C, subtypes O, 1, 2,
and 3). The chain address points to the beginning of the
threaded list which is terminated by an absolute zero value.
The resolution address and the chain address may be absolute
or relocatable,

Note: Because the terminator of the chain is zero, no pro-
gram may have an address literal chain whose last
link is at absolute zero (i.e., the item would refer-
ence zero and would thus appear to terminate the
chain).

Note that external reference (REF) (type A) and secondary
reference (SREF) (type B) chains are structured in the same
manner, but resolved by the loader using an external defi-
nition value (type 9).

DISPLACEMENT CHAIN RESOLUTION (Type C, subtypes
6, 7, A, and B)

word 0

Control word

1 1 00[pp q rj0O0 0 0[O 010

0 3 4 7 8 9 11 12 15
word 1
Resolution address
0 15
word 2
Chain address
0 15

This item defines a location (called the resolution address)
within the module whose relative displacement must be in-
serted in a chain of displacement fields within the module.
In the control word, the displacement chain is defined in

bits 4-5
where

pp = 01 indicates that an indirect bit is not set in each
instruction in the displacement chain,

pp = 10 indicates that an indirect bit is set in each
instruction in the displacement chain.

g =1 always indicates absolute displacement of the
last item in the chain (relative to the chain
base declared in item type 8),

Appendix A 145

The resolution address is defined in bit 7
where

r =0 indicates a relocatable resolution address.
r =1 indicates an absolute resolution address.

When forward references occur during one-pass processing,
and the possibility of resolving the referenceby adefinition
or literal may occur within 255 locations, the 8-bit dis-
placement field of the instruction may be used fo form a
displacement chain. The item types 8 (relative location
pointer — establish chain-base) and C (displacement-chain
resolution) must be used together to resolve the chain by
substituting actual displacements determined at load time.

In the creation of a displacement chain, the pointer in the
type 8 item defines the relative location in the program to
be established as the chain base. Eachnew type 8 item can
define a new chain base. The values in the displacement
field of the instructions included in any given displacement
chain refer to the absolute displacement of that instruction
relative to the currently established chain base; e.g., ifthe
chain base is established to be X'100" and an instruction is
located at X'125', the displacement of that instruction for
purposes of the displacement chainis X'125'-X"'100" or X'25'.
This point is emphasized since the loader will use this dis-
placement only to determine the final displacement of the in-
struction relative to the location of literal or target locations.

When the displacement chain connects instructions that ref-
erence a literal or a specific target location within range of
the chain base (e. g., LDA=3 LDA=LAB, B XR), no indirect
bit is set in each instruction (pp = 01 in Header — Type C).

When the chain connects references to an external symbol
or forward reference whose value will be given in some lit-
eral within range of the chain base, pp is set to 2 in the
type C header, to set the indirect bit in each instruc-
tion in the chain (e.g., LDA X, which will be resolved

as LDA *$+n, where n is the displacement of ADRL X rel-
ative to the instruction).

The chain base address (in the type 8 item) may be declared
as an absolute or relocatable value. The resolution address
(first data-word of a Type C item) is the address of the target
location or literal expressed as a location, and not as a dis-
placement on the chain base. Note that although the reso-
lution address is defined at this point, the value of the literal
at that resolution may not be defined until later. In fact, it
may be an element of an address-literal chain (type C) or
external reference chain (type A)., The address-literal or
external chain resolution is independent of the displacement
chain resolution.

The chain address given in the second data word is the ab-
solute displacement of the last item in the chain, relative

to the chain base declared in type 8 (e. g., if the effective
chain base were X'1000' and the value of the chain address
were X'20', the last item of the displacement chain would

be located at X'1020').

A separate displacement chain will be created for each
unique variable in a given displacement region. Thus, many
displacement chains may be built using the same chain base.
As a matter of fact, the chainbase may not be changed until

a displacement chain resolution item has been output for
each displacement chain. An unresolved displacement chain
is a serious error condition in the output, and is unaccept- -
able for execution.

The format of the displacement chain is described in the
example in Figure A-2,

Example: Let a chain base be declared at 109(R). (Numbers
given are decimal.) It is assumed that the ADRL for XLB
will be ultimately loaded at 140(R). Note that the displace-
ment field of each instruction before resolution is a pointer
to the location of the next item in the threaded list relative
to the chain base,

Displacement Displacement

Item Type C, Displacement
Chain Resolution

140(R)

Resolution Address

Chain Address 27(A)

Relati‘ve . Displacerr':en'r Field of Instruc- Field of Instruc-
Location Symbolic From Chain . .

tion Before tion After
Counter Base . .

Loading Resolution
110 LDA XLB 00 (end of chain) 30 (140-110)
125 STA XLB 16 01 15 (140-125)
134 CcpP XLB 25 16 ‘ 06 (140-134)
136 STA XLB 27 25 04 (140-136)
140

146 Appendix A

Figure A-2. Displacement Chain Format

APPENDIX B. SYSTEM ZERO TABLE AND CONSTANTS

Monitor Zero Table

Address
Dec. Hex. Name Purpose and Assignment
0 0 Reserved for Monitor Use.
1 1 K:AC Pointer to Current Floating Accumulator.
2 2 K:AC1 Pointer to Current Floating Accumulator (1).
3 3 K:AC2 Pointer to Current Floating Accumulator (2).
4 4 K:AC3 Pointer to Current Floating Accumulator (3).
5 5 K:FFLG Pointer to Current Floating Flags.
6 6 K:BASE Pointer to Current Task Reentrant Temp Stack.
7 7 K:TCB Pointer to Current Task TCB.
8 8 R:IOP Pointer to 8-word IOP Table.
9 9 Standard Constants for Foreground, Monitor, and Background
: . Use (see Table B-2 for complete list).
63 3F
64 40 IOCS Pointers and Constants.
99 63
100 64 Reserved for Monitor Use.
132 84
133 85 Debug Transfer Vector D:KEY.
134 86 Debug Transfer Vector D:CARD.
135 87 Debug Transfer Vector D:SNAP.
136 88 Reserved for Debug Use.
167 A7
168 A8 Real-Time Foreground User Storage (reserved for foreground
. : communication between foreground and background or for
']94 &2 address literals or constants).

Appendix B

147

Table B-1. Monitor Zero Table (cont.)

Address
Dec. Hex. Name Purpose and Assignment
195 c3 Power OFF.
196 C4 Power ON.
197 C5 Integral 1IOP timeout.
198 Ccé Watchdog Timer timed out.
199 Cc7 Monitor Service Routines Transfer Vectors (see Table 7 for list).
231 E7
232 E8 Monitor Constants (see Table B-3).
251 FB
252 FC Counter Interrupt Locations (optional).
255 FF

Table B-2. Standard Constants

Address Value Address Value
Dec. Hex. Dec. Hex. Dec. Hex. Dec. Hex.
9 9 32768 8000 20 14 16 10
10 A 16384 4000 21 15 8 8
11 B 8192 2000 22 16 4 4
12 C 4096 1000 23 17 2 2
13 D 2048 800 24 18 1 1
14 E 1024 400 25 19 0 0
15 F 512 200 26 1A -1 FFFF
16 10 256 100 27 1B -2 FFFE
17 1 128 80 28 1C 3 3
18 12 64 40 29 1D -3 FFFD
19 13 32 20 30 1E -4 FFFC

148 Appendix B

Table B-2. Standard Constants (cont.)

Address Value Address Value
Dec. Hex. Dec. Hex. Dec. Hex. Dec. Hex.
31 1F 5 5 48 30 14 E
32 20 -5 FFFB 49 31 -14 FFF2
33 21 6 6 50 32 15 F
34 22 -6 FFFA 51 33 -15 FFF1
35 23 7 7 52 34 -16 FFFO
36 24 -7 FFF9 53 35 32767 7FFF
37 25 -8 FFF8 54 36 32512 7F00
38 26 4 9 55 37 33023 80FF
39 27 -9 FFF7 56 38 65280 FFOO
40 28 10 A 57 39 255 OOFF
41 29 -10 FFF6 58 3A 61440 FO00
42 2A 11 B 59 3B 3840 OF00
43 28 -1 FFF5 60 3C 240 00FO0
44 2C 12 C 61 3D 49152 €000
45 2D -12 FFF4 62 3E 31 1F
46 2E 13 D 63 3F 127 7F
47 2F -13 FFF3

Table B-3. Monitor Constants

Address
Dec. Hex. Name Purpose
226 E2 K:IOCS Pointer to IOCS Tables.
227 E3 Reserved for Monitor use.
228 E4 K:MASTD Pointer to Master Dictionary.
229 E5 K:PAGE Number of Lines/Printer Page (SYSGEN Parameter).
230 E6 K:BACBUF Background 1/O Buffer Pool FWA.
231 E7 K:BACKP Protected Background FWA (Start of TCB).
232 ES K:VRSION RBM Version.

Appendix B

149

Table B-3. Monitor Constants (cont.)

Address
Dec. Hex. Name' Purpose
233 E9 K:PLFWA Public Library FWA.
234 EA K:RFFWA Resident Foreground FWA.
235 EB K:NFFWA Nonresident Foreground FWA.
236 EC K:BACKBG Unprotected Background FWA.
237 ED K:UNAVBG Unavailable Memory FWA.
238 EE K:BLOCK Size of Blocking Buffer in Words (180 or 512).
239 EF K:FEF FORTRAN Background Error Severity (1).
240 FO K:TVECT Pointer to Transfer Vector Table.
241 F1 K:FWA Legal TVECT Entries to FGD-FWA.
242 F2 K:LWA Legal TVECT Entries to FBD-LWA+1.
243 F3 F:FWAI TVECT FWA for T Register Check.
244 F4 K:LWAI TVECT LWA+1 for T Register Check.
245 F5 K:OLOAD Pointer to RBM OV:LOAD Table.
246 F6 K:MTMP Size of Nondynamic Storage, in Words (6).
247 F7 K:CCBUF Address of Control Card Buffer.
248 F8 K:NRFQ Pointer to Nonresident Foreground Queue Table.
249 F9 K:NEXT Next Available Sector in BT Area.
250 FA K:PROTCT Pointer to Protection Register Table.
251 FB K:PMDTBL Pointer to Postmortem Dump Table.
Mhese names are as defined in the RBM Monitor and are not system definitions. Any references to these locations by
these names must be defined in the user program (e.g., K:10CS EQU X'E2').
Relationships for Monitor Constants:
1. (K:PLFWA) = LWA+1 of RBM. 4, (K:BACKP)= LWA+1 of Nonresident Foreground.
2. (K:RFFWA) = LWA+1 of Public Library. 5. (K:BACKBG)= (K:BACKP) + 39.
3. (K:NFFWA) = LWA+1 of Resident Foreground 6. (K:CCBUF) = (K:UNAVBG) - 62,

150 Appendix B

APPENDIX C. RBM SYSTEM ABORT CODES

The abort codes given in Table C-1 are the standard abort
codes output by the Monitor, Basic FORTRAN IV Compiler,
Extended Symbol assembler, Utility Subsystem, and RAD
Editor (see also supplementary control command diagnostics
in Appendix D). ’

OVERLAY LOADER ABORT CODES

The abort codes given in Table C-2 will be output by Over-
lay Loader which will then exit via a call to the RBM
routine M:ABORT.

LOADER 1/0 ABORT MESSAGE

The 1/O abort message has the following format, followed
by the message "ABORT IO location":

oplb device type and number diagnostic
where
oplb is the operational label of the device or file

on which the error occurred.

device type and number

label.

pertain to the operational

diagnostic is an error diagnostic corresponding to
an 1/O completion code.t

fSee Table 10, "1/O Completion Codes", in Chapter 4.

The following diagnostics may be used:
UNRECOVERABLE 1/O ERROR
CALLING SEQUENCE ERROR
INVALID OPERATIONAL LABEL
OL =0, OR OPERAT MEANINGLESS
ILLEGAL END OF FILE
END OF TAPE
INCORRECT RECORD LENGTH
ILLEGAL BUFFERING
WRITE PROTECTED
BEGINNING OF TAPE
ILLEGAL RAD SEQUENCE

BLOCKING BUFFER UNAVAILABLE

An example of the 1/O abort message is given below:

BI MTDO END OF TAPE
ABORT 10 3F4C

where

BI is the oplb.

MTDO is the device type and number.
END OF TAPE
3F4C is the ABORT IO location.

is the diagnostic.

Table C-1. RBM Abort Codes
Code Meaning
AE Assignment error during loading; im;;roper /O assignment or invalid format.
Al Irrecoverable 1/O error on device assigned to operational label Al
BI Irrecoverable 1/O error on Bl device.
BO Irrecoverable 1/O error on BO device.
CcC Error in control cards or in sequence of job stack.
CK Irrecoverable error while checkpointing.
Cs Checksum error from absolute or relocatabie binary input.

Appendix C

151

Table C-1. RBM Abort Codes (cont.)

Code Meaning

DE Debug not resident when requested.

ER Operator-recognized error condition.

ES FORTRAN library abort'.

FC Illegal FORTRAN control card.

Fs FORTRAN abort'.

GO Irrecoverable error on output to the GO file when using @ IREL command.

1E Error in input deck. (Usually, a negative ORG item has been input.)

10 Irrecoverable 1/O error.

LO Irrecoverable 1/O error on LO device.

oP Operator abort, from unsolicited key-in.

ov Problem with device assigned to operational label OV. (Normally, OV is assigned to the RAD.)

PE Parity error in background (perhaps attempting to read from unavailable memory).

PU Number of argument greater than temporary storage in M: PUSHt.

PV Protection violation.

RE RAD Editor abort'.

RS Irrecoverable error during restart.

S1 Irrecoverable input error in SI device.

SQ Sequence error in absolute or relocatable binary deck.

TL Background program time limit exceeded.

TS Temp stack overflow.,

Y Invalid load type in ABS deck.

ut Utility subsystem aborff.

XE Fatal error in loading.

XS Extended Symbol abort'.

TAfter the abort code is output, the processor will exit via the RBM routine M: ABORT.

Notes: 1. The processing of the job stack is discontinued following any abort. If an IATTEND control command
was in effect, the Monitor will enter an "idle" state. This will allow the operator to correct the problem
and restart the job. If not in "attend", the Job Control Processor will read commands until o 'JOB or
IFIN command is encountered. All control commands encountered prior to the 1JOB or !FIN command
will be logged in with an indication (">" will precede the command) that they have been ignored.

2. If integral 10OP timeout occurs, RBM checks foreground mailbox X'C5' for a watchdog receiver. If a re-
ceiver is specified, RBM branches to it; otherwise, RBM halts with the address of the interrupt in the
accumulator. An integral 1OP timeout indicates hardware difficulties.

152 Appendix C

Table C-2. Overlay Loader Abort Codes

Code Meaning

Al Error in accessing the RBMSYM file.

A2 Error in accessing the LIBSYM file.

A3 Error in accessing the EBCDIC library file.

A4 Error in accessing the DEFREF library file.

A5 Error in accessing the MODIR library file.

Ab No blocking buffer is available for the RBMID file.

A8 Error in accessing the TVECT file.

A9 Error in closing the RBMID file.

BB Cannot use RS' op label because it is already used by Overlay Loader.

CM | A COMMON displacement or size larger than that stipulated on the | OLOAD command or in a start item
was detected. (Background abort only.)

CR A non-COMMON item was relocated into COMMON. This condition only occurs when an actual data
item is to be stored into COMMON.

DS The same identifier was used to name two different segments.

EF An illegal end-of-file was detected.

IT An illegal item type was detected.

LI The library files cannot be loaded because of incorrect construction of the library.

On An Overlay Loader function that prevents proceeding has occurred. The number of the overlay in which
the malfunction occurred is indicated by n.

PL Overlay Loader was unable to write the Public Library, the LIBSYM, or the TVECT files onto the RAD.

RS Overlay Loader unable to correctly read the RBMSYM file from the SD area.

SA Not enough segments were allocated for the task. The segments parameter of the |OLOAD command
should be larger.

sD Next segment of the Overlay Loader cannot be loaded.

SE Input ROM had an error severity level greater than zero.

SG Format or parameter error was detected on a I$SEG command.

SL The length of a segment was excessive, (see 1SROOT and I$SEG commands for maximum segment size).

TO There was a table overflow. Decrease the size of the program or reduce the number of external symbols.

UN The number (on the !$SEG card) of the segment to which this one is attached has not been defined.

Appendix C

153

The following error messages may appear on the background
DO device as a result of an error condition detected by the
JCP. These diagnostics supplement the abort or attend error

codes printed by the JCP.

Message

.BK OPLB/DFN TBL FULL

.FG OPLB/DFN TBL FULL
.ILL C:CODE
.ILL C:TCB

.ILL RAD SEQUENCE

.INV COMMAND

154 Appendix D

Comments/
Associated Commands

ASSIGN, DEFINE, default
assignments for system
processors

ASSIGN
C: (Connect)
C: (Connect)

WEOF, REWIND, UNLOAD,
FBACK, FSKIP, RBACK, RSKIP

Command not recognized as
a Monitor service command,
system processor, or user
processor.

Message

.INV OPLB OR DFN

- INV OPTION

-NO 'FG' KEY-IN

.NO 'SY' KEY-IN

- OP NOT MEANINGFUL

.RAD TEMP OVERFLOW

APPENDIX D. CONTROL COMMAND DIAGNOSTICS

Comments/
Associated Commands

ASSIGN, DEFINE, WEOF,
REWIND, UNLOAD, FBACK,
FSKIP, RBACK, RSKIP

An invalid option has been
encountered on a Monitor
service command

ASSIGN, XEQ,C:

WEOF, ABS, REL

WEOR, REWIND, UNLOAD,
FBACK, FSKIP, RBACK,
RSKIP

DEFINE, default assignments
for system processors

3 X1puaddy

e |

The following table should be used to determine the standard assignments for an installation's RBM operational labels and to determine which operational
labels, if any, should be suppressed by being assigned to file 0. The RBM operational labels are defined under the !ASSIGN command in Chapter 2.

RBM
RBM QOperational Device
and Labels Number | CcC Sl Ul Al BI BO uo LL DO
Processors
RBM Read/Write | Read Read Read Object Write Control
unsolicited Control Absolute | modules with Command
key=in Commands Binary IREL command Images
XSYMBOL [Read Control| Read Source Write Reloc. Used for CC Write XSYMBOL
commands)] Statements Binary Diagnostics Error Messages'!
Concordance Read Source Write Concordance
Statements Error Messagestt
Basic FORTRAN IV Read Source Write Reloc.
Statements Binary
. Write Library
Math Library Error Messages
Overlay Loader Read Write Map, Loader
Control Error Messages and
Commands Control Command
Images
RAD Editor Read Object Module Qutput Copies of Ob- Write Error Mes-
Control Input to System ject Modules from Sys- sages, Control
Commands and User tem and User Libraries Commands and
Libraries operator key=-ins
Utility Executive Read Read Write Utility Error
Control Message and Con-
Commands trol Command
Imagestt
Utility Copy! Read Control Read
Commands Input
Lrs Read Control
Utility RECEDIT Commands and Read Write
Modific Input | Input Output
Utility OMEDIT Read Control Read Read Binary Write
Commands Input Modific. Input Qutput
Utility DUMP Read Control Read
Commands Input
Utility SEQEDIT Read Update Read Write
Data Input Output

tMc:y use any op label for output.

tt
Suppressed if assigned to same device as LO.

39vSN 138v1 TYNOILYYIdO WEY €/Z YIWIIS '3 XIONIddY

9¢1

3 x1puaddy

RBM
REM erational | u PM oc X1 Pl ov X2 X3 52 GO X4 X5
and Labels
Processors
RBM Write Abso- Write Proces- Read RBM Write Pro- Write Ob-
lute Binary sor and Mon- Overlays gram Loaded ject Mod-
Monitor (SYS- | itor Abort by IABS ule with
GEN only) Messages Command IREL
command
XSYMBOL WRITE Listing Operator Intermediate Read Output Output Qutput Qutput
Qutput and Commu- Output XSYMBOL Encoded Program Standard Execution
XSYMBOL nications Overlays Text Locals Proce- Object
Error Messages dures Language
Concordance Write Listing
Output and
Concordance
Error Messages
Basic FORTRAN IV Write Listing Intermediate Read Output
Output and Output FORTRAN Execution
FORTRAN Overlays Object
Error Messages Language
Math Library Write Library Operator
Error Messages Commu-~
nications
Overlay Loader Read Reloc. Operator Contains Sym- | Read Write Read
Binary Commu- bol Table for OLOAD Core Reloc.
Library File nications each segment Overlays Images Binary
RAD Editor Write Maps Operator Replace Files Read RAD Replace Maintain Li- Maintain
and Dumps Commu- and Maintain Editor Files and | braries and Libraries
of Files nications Libraries Overlays Maintain | Update Di-
Libraries | rectories
Utility Executive Write Utility Operator Read Prestore
Error Messages, Commu- Utility - Commands
Control Com- nications Overlays From SI
mand Images and
other Output
Utility Copy Input
for
Verify

Utility RECEDIT

Write Modi-
fication Log

Utility OMEDIT

Write Module Log

Prestore Bl

Utility DUMP

Write Dump

Utility SEQEDIT

Write Listing

APPENDIX F. CHARACTER-ORIENTED COMMUNICATIONS (COC) EQUIPMENT HANDLER

This appendix describes the interface of RBM with the Xerox
character-oriented communications (COC) equipment.t The
COC equipment provides communication between Sigma 2/3
real-time programs and various terminal devices. The COC
consists of a controller and from one to eight attached line
interface units, with each unit containing from one to eight
send-and-receive modules. The Sigma 2/3 RBM can accom-
modate one COC, which gives the user up to 64 lines each
with send-and-receive equipment. The terminal devices
supported (one per line) can be Teletype Models 33, 35,

or 37. Other terminals can be connected but they must use
ANSCII control codes, and all editing must be done by the
user program.

The computer requirements for use with the COC equipment
are as follows:

1. RBM with at least 16K of core memory.

2. One buffered input/output channel dedicated to the
COC controller.

3. Two external interrupts dedicated to the COC
controller.

4. External interface feature.

DESCRIPTION OF COC PACKAGE

The COC software package allows messages to be communi-
cated via the character-oriented equipment, and consists

of two sections — M:COC and RCOC.

m:cocC M:COC is a Monitor service routine that initi-
ates all read, write, and control operations. It is part of

the RBM overlays and requires no modification by the user
before use. (M:COC is described in detail in Chapter 4.)

RCOC RCOC consists of the following tasks and tables
that make up a resident foreground program:

1. An initialization routine.

2. A real-time task connected to the input interrupt of
the communications controller, which edits and trans-
lates input characters, echoes the characters if re-
quired and forms input messages.

fSee Xerox Sigma Character-Oriented Communications
Equipment Reference Manual, Publication 90 09 81, for a
description of the equipment involved, the possible con-
figurations, and the various uses for the equipment.

3. A real-time task connected to the output interrupt of
the communications controller, which transmits out-
put messages and editing characters at end-of-message

(EOM).

4. Conversion tables (ANSCII to EBCDIC, and vice

versa).
5. An input buffer (overlays the initialization routine).

RCOC must be assembled separately for each installation
unless the default cases for the installation specific assem-
bly parameters agree with the parameters desired. The
assembly parameters are as follows:

1. The device number of the COC (buffered input/output)
(default = 7).

2. The COC number (direct input/output) (default = 0).

3. The input interrupt level (even number of the even-odd
pair) (default = 110). The output interrupt level is
assumed to be the odd number.

4. Number of lines used (n), where all line numbers 0 to
n-1 are assumed to be used (default = 1).

COC OPERATION

RCOC is a resident foreground program and must reside on
either the SP or UP area of the RAD. It is read into core
memory and operated whenever RBM is rebooted. The
RCOC initialization routine turns on all. transmitters and
receivers, arms and enables the input and output interrupts,
initiates input from the COC controller into a wraparound
buffer, and exits. At this point, all lines are set to the
"disconnected" status, ready to be connected and used by
the real~time programs. Input is initiated and an input in-
terrupt is generated for each character input, but the data
are ignored until the line is connected and a read request
is given.

All line-control and read-or-write operations are initiated
by calls to M:COC. A request to read merely causes the
line status to be set to "read", which in turn causes the
input interrupt routine to accept input from that line and
build the input message in the user's buffer. A request to
write causes M:COC to turn on the transmitter and transmit
the first character in the user's buffer. Thereafter, anoutput
interrupt is generated once each "output word time" (i.e.,
once each time the transmitter can transmit). The output
interrupt routine transmits characters from the user's buffer
until the entire message is sent and then turns off the
transmitter.

As each input or output message is completed, the status of
the line is set to "message complete" and an EOM Receiver
(if present)isoperated at the input or output interrupt level.

Appendix F 157

The receiver should trigger the requesting task and return
to the location contained in the L register.

AUTOMATIC DIALING

If the Automatic Dialing Equipment (ADE) is included,
real-time tasks can dial a terminal and connect it to a
predetermined COC line. The ADE is a multiunit con-
troller that controls up to 16 dial positions. It requires a
dedicated buffered IOP channel.

The dialing operation can be accomplished via M:IOEX.

A TDV should first be performed to ensure that the dial
position is available. Then an SIO can be issued to acti-
vate the ADE and address the dial position. Any order byte
will be interpreted as a "write". The memory buffer con-
tains the number of the data set being dialed (two bytes
per word; each digit occupies the rightmost four bits of the
byte in four-bit BCD). After the dialing procedure has been
completed, the task should check the status of the COC
line before attempting to send or write on it.

158 Appendix F

RESTRICTIONS

The priority of the input/output interrupt pair must be
higher than any program using its services via M:COC
and should also be higher than other real-time programs
with long execution times. If a program with a higher
interrupt priority runs for a long period of time, the
input buffer may become filled and data may become
lost. The output data would be delayed but no data
would be lost.

All COC lines (i.e., assembly parameters) are assumed to
be operational. The RCOC initialization routine will
loop, attempting to turn the receiver on for a nonexistent

COC line number.

If automatic dialing is included, the user must include
M:IOEX during SYSGEN and must input the dialing posi-
tions as XX type devices.

APPENDIX G. SYSGEN AND ASSEMBLY TIME OPTIONS

The optional RBM capabilities below are obtainable as a

package in response to the SYSGEN query INC. MISC.
At least 100 (decimal) additional resident core memory
locations are required.

HEXADECIMAL CORRECTOR CARDS

Patches may be loaded at execution time for either the
Monitor itself or any user program. All corrector cards
have the form

aaaa CCCC.I [CCCC .. CCCCn] [*commenfs]

9
where
aaaa is the first (or only absolute core memory
location to be modified.
ccec; are the desired (hexadecimal) contents of

i
aaaa and the following n-1 locations.

Patches are loaded from CC in one of two ways:
1. Following a HEX control command.
2. Following an unconditional H key-in.
All corrector decks are terminated by an EOD control com-
mand. To patch relocatable programs, a bias card may be
used. Its form is

+bbbb
where bbbb is the bias and the following correctors are
loaded relative to that location. Any value (on a cor-

rector card following the bias card) preceded by a plus
(i.e., +ccee;) will have the bias added to it.

To patch program segmeni‘s,f Data Switch 0 must be placed
in the "1" state. This causes the RBM to type "BEGIN
SEG xx" (where xx is the segment number; XX =0 for the
root) and go into an idle state ofter each segment is loaded.
Correctors can then be loaded to the segment following an

H key-in. An S key-in will cause RBM to resume operation.
The ability to type the message "BEGIN SEG xx" is deter-
mined when RBM is assembled and is not related to the in-
clusion of the"MISC." routines.

THREE-CHARACTER PROCESSOR SEARCH

An assembly time option exists for the Job Control Processor
(which does not increase resident RBM) to identify a
processor from the first three characters input.

When the Control Command Interpreter encounters a pro-
cessor request such as IXSYMBOL, a search is first made
of the system, then the user processor area, to locate the
file whose name matches the requested processor exactly.
Normally, if this search fails, the Monitor aborts the job.
However, if this assembler option has been selected, the
request is then truncated to three characters (i.e., !XSY)
and the search of the system and user processor areas is
repeated. Thus, if Extended Symbol has been defined on
the system processor area of RAD as the three-character
name !XSY, either a request of IXSYMBOL or ISXY will
locate the system processor.

fAn optional assembly parameter in the RBM subtask S:LOAD.
This parameter does not increase RBM.

Appendix G 159

APPENDIX H. MEMORY REQUIREMENTS

CORE SPACE REQUIREMENTS FOR RBM

The minimum RBMsystem (which would consist of keyboard/
printer, paper tape, and RAD 1/O routines, and a minimum
number of RAD device-files and operational labels) requires
about 43007 cells for the Real-Time Batch Monitor and all
its tables. This minimum core space requirement will in-
crease as handlers are added for additional peripherals,

as additional optional software routines are chosen (see
Table H-1) during SYSGEN, and as additional device-
files, operational labels, or Public Library DEFs are allo-
cated during SYSGEN. The following table indicates the
approximate core space requirements for the additional rou-
tines. Unless otherwise indicated, these number are only
approximate and have been rounded to the next higher
multiple of 25.

Table H-1. Core Requirements for Additional Software

Approximate

Handler or routine size (decimal)

Multiply/Divide Simulation 175

Software

Power Off/On 196
M:IOEX 188
Job Accounting 216
Line Printer Handler 79

Card Reader Handler 2 (exact size)

BCD Option for Card
Reader

2 (exact size)

Magnetic Tape Handler 208
Card Punch Handler 2 (exact size)

BCD Option for Card
Punch

2 (exact size)

Each additional RAD Device
File

15 (exact size)

Each additional Operational 2 (exact size)

Label

Each Public Library DEF 2 (exact size)

Hence, the resident core space requirements for RBM vary
from 4300 to 6200 cells, depending upon the user's con-
figuration. If background processing is desired, the user

160 Appendix H

must allocate at least 3800 cells for background to accom-
modate the RBM Job Control Processor which executes in the
background space.

CORE SPACE REQUIREMENTS FOR THE
RBM PROCESSORS

The minimum background space necessary to individually
load with the Overlay Loader program and to execute all
the RBM Processors is 7K cells (1K = 10241p). The largest
processor here is Basic FORTRAN IV, which requires 7K
cells when it is loaded by the Overlay Loader. FORTRAN
programs of reasonable size can be compiled in 7K of back-
ground. Extended Symbol can be loaded in @ minimum of
6. 25K of background, and a program of approximately 1200
to 1800 instructions could be assembled in this minimum
space. The other RBM processors can all be loaded and
executed in less than 6K of background.

RAD SPACE REQUIREMENTS

Table H-2 gives the allocations for the system areas of the
RAD, if a user chooses not to override the default case. The
following discussion assumes a 360-byte-per-sector RAD.

Table H-2. RAD System Area Requirements

Area Size Comments
Checkpoint n sectors n=size of background
(in sectors).
System 30 tracks Sufficient to contain all
Processor RBM processors plus RBM.
System 9 tracks Sufficient to contain two
Library versions (extended and
basic) of Math/Run-Time
Library.
System 14 tracks RBM files.
Data

Note that this leaves approximately one spare track in the
system data area. However, if a Public Library is included,
the file LIBSYM must be added to the system data area.
Hence, the system areas and the checkpoint area will

normally consume about 45 tracks of the RAD. (The small-
est Xerox RAD, .75 megabyte, has 128 tracks.) The only

other area used by the system is the background temp area.
The processor that normally requires the largest background
temp area is Extended Symbol. Extended Symbol normally
requires the background temp area to be split into three

scratch files, called X1, X2, and X3.1 File X1 is o
compressed file and contains the user's source deck
(about 12 source cards can be compressed into one RAD
sector). File X2 contains the user's source deck in an en-
coded form (normally about 36 source cards can be stored
in one RAD sector on X2). File X3 is only used if the pro-
gram being assembled contains local symbols. Normally,
the RAD space required for X3 is insignificant compared
with X1 and X2. Hence, to assemble a 5000-card source
program, approximately 35 tracks of background temp area
would be required. Thus, if a user wants to have all the
system processors and a complete system library stored on
the RAD, and wants to allocate enough background temp

area to assemble about a 5000-line source program, approxi-
mately 80 tracks of the RAD would be used.

"The Job Control Processor will automatically divide the
total background temp area into three scratch files upon
encountering an IXSYMBOL command. The total area is

divided amoung the X1, X2, and X3 files according to the
following ratios:

X1:X2:X3 = 90: 30: 3

The user can override these default allocations by inputting
a IDEFINE command prior to the IXSYMBOL command.

Appendix H 161

APPENDIX I. CALCULATING THE RBM SIZE

To calculate the size of RBM (RBM LWA)before a SYSGEN,
I add the base value of F86 or 3980:

8 x number of /O channels

2 x number of definitions in the Public Library

4 x number of entries in nonresident foreground queue

4 x number of Master Dictionary entries

1 x number of entries in Alternate Track Pool

10 x number of RAD/disk pack devices

To this figure add the following:

DO(]()) or 216 cells if a Y response to INC. CLOCK
ONE

]0(16) or 16(10) cells if a Y response to INC. DEBUG

or 85

(10)

56(16) (10) cells if a Y response to INC. MISC.

2or 2(]0) cells if a Y response to INC. C. O.C.

Add to this amount the number given below (see Table I-1)
if the corresponding device type is included in the SYSGEN
parameter DEVICE FILE INFO:

To this sum, add two cells for each background or foreground
operational label.

C4(16) or]96(]0) cells if a¥ response to INC. POWER Since SYSGEN attempts to store whatever optional routine
ON/OFF of tables it can into the unused interrupt locations, the size
of the unused interrupt region can generally be subtracted
AD(]é) or]73(]0) cells if a Y response to INC. MUL/ from this accumulated sum. The size of this area can be
DIV SIM determined by subtracting the value input for the SYSGEN
: parameter MAX. INT. LOC from 18F(14) (399(]0)). How-
. ever, this figure will be less than the true size of RBM since
BB(]é) or]88(]0) cells if a ¥ response to INC. M:IOEX not all of these unused interrupt locations can be used
Table I-1. Device Type Table Allocations
Size
First Input Additional Inputs
Device Hex. Dec. Hex. Dec.
Kp 1F 31 (required) F 15
LP2 1E 30 E 14
LP8 4F 79 B 1
CR4 1B 27 B 11
CP1 1F 31 F 15
CP3 96 150 86 134
Any magnetic tape! DO 208 B 11
PT 1F 31 F 15
PL 19 25 B A
| | roft - - 14 20
XX 6 6 6 6
"Add two cells to the first input if magnetic tape is BCD.
H.The default case for background is nine RD files.

162

Appendix 1

APPENDIX J. DEBUG EXPANSION OF INSTRUCTIONS

EXPANSION OF INSERTED INSTRUCTIONS

Class 1 instructions that are inserted via the insert (I) com-
mand are expanded into more than one instruction if desig-
nated in the op*address form. (Note that expansions of
indirect instructions are not reentrant,)

Op is direct (0): op *$ + 2
B S+ 2
DATA address

Op is indexed (2): op *$+2,1
B $+2
DATA address

Op is indirect (4): STA $+6
LDA *$+7
STA $+5
LDA $+3
op *$+3
B $+4
DATA 0
DATA 0

DATA address

Op is indirect and indexed (6):

STA $+6
LDA *$+7
STA $+5
LDA $+3

op *$+3,1
B $+4
DATA 0

DATA 0

DATA address

Class 2 instructions are expanded as follows:

op $+2
B $+3
B *$+ 1

DATA address

EXPANSION OF MOVED INSTRUCTIONS

An instruction that is moved from the point of insertion to
the insert block will require expansion if its addressing is
relative or if it is a register copy instruction in which the
P register is the source.

The relative instructions are expanded the same as the
inserfed instructions discussed in the first part of this
appendix. In the case of Insert Before (IB) or snap-
shots, register copy instructions in which P is the source
and the clear bit is set will be expanded in one of two
ways:

1. If the destination is the A register:

LDA $+3
op A A
B $+2
DATA a+1

2. If the destination is not the A register:

STA $+5
LDA $+5
op AR
LDA $+2
B $+3
DATA 0
DATA a+1

In the above expansions, @ is the location (point) of the
insertion and op has the appropriate settings for the incre-
mentation and inversion bits.

Debug has no facility for expanding a copy instruction where
either (1) the P register is the source, the A register is the
destinafion, and the clear bit is reset, or (2) the P register
is the destination and the clear bit is reset. In this case a
Debug syntax error is generated.

Appendix J 163

APPENDIX K. DEBUG INSERTION STRUCTURE

An insertion at location @ will result in the following:
a B *B

B DATA 7

moved instruction expansion if IA command

inserted instructions or snapshot call code

Y 4

moved instruction expansion if IB or snapshot command

B *$ + 1

. DATA a+ 1

where 3 is one of the Debug cells in the zero table and ¥ is an area in the insertion block.

164 Appendix K

APPENDIX L. DEBUG SNAPSHOT CALLING SEQUENCE

A snapshot inserted at location @ will generate the following
calling sequence (which is inserted in the insertion block
similar to a Debug IB command):

al DATA D:SNAP
a2 DATA block

instruction that was at location @

entry WD X'FC' (foreground only)
STA *a2
RCPYI P, A
B *al
DATA a
DATA key
conditions if any
DATA -1
message if any
DATA -1
dumps if any

. DATA -1
expanded instruction from location @
B *$+1
DATA a+ 1
where
block is the address of the first word of the inser-

tion block and is used to save the A register.

key (bits 0-2) designates type of snapshot: setting
bit 0 designates stepping snapshot; setting bit 1
designates line printer snapshot output; and setting
bit 2 designates keyboard control requested.

message is the string of EBCDIC characters, if
any.
condition is a string of relational expressions sep-

arated by logical operators. A relational expres-
sion occupies three words as follows:

loc, reg, or constant

M1 [M2 CIEjL|G

loc, reg, or constant

where

M1 (bits 0-1) designates the type of
quantity in the first word:

00 location
01 register
10 constant

M2 (bits 2-3) designates the type of
quantity in the third word.

C (bit 12) designates comparison where
0 = arithmetic and 1 = logical.

E (bit 12) designates equal comparison.
L (bit 14) designates less than comparison.
G (bit 15) designates greater than

comparison,
A logical operator occupies one word:
0 logical or

1 logical and

dumps are two-word or three-word items:

] T register dump

register number

or

loc 1 memory dump

loc 2

where

T=1 designates keyboard/printer and
line printer output,

T=0 designates line printer output,

A zero register number designates all registers.

Appendix L 165

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in

numerical sequence.

A

abort, 12

abort codes, 151

ABS control command (Monitor), 9
Absolute Loader, 9,3, 63

absolute object language, 9

accounting (clock 1), 4

accounting file, 14

active foreground program, viii

ADD control command (RAD Editor), 86
address definition, 144

address literal chain resolution, 145
AlO receiver, 70, 56,31, 32, 65

ALL option, 128

ASSIGN control command (Monitor), 10
ASSIGN conirol command (Utility), 97
ATTEND control command (Monitor), 12
Automatic Dialing Equipment (ADE), 158

B debug command, 139

background, viii

background abort, 12

background core allocation, 120
background jobs, 2, viii, 7
background restrictions, 7
background scheduling, 2

bad tracks, 90

Basic FORTRAN 1V, 6, 18

Basic FORTRAN IV compiler, 16,17
binary object module, 100

BL oplb key-in, 24

batch processing, viii

blocked file, 45,87

blocked RAD files, 57

blocking buffer, 45

BLOCK control command (Overlay Loader), 78
BR, key=-in, 24

BTdn, track key-in, 24

buffer pool, 45

C

C: control command (Monitor), 12

C:TCB key-in, 24

CC control command (Monitor), 13

CC key=-in, 24

CHANGE control command (Utility), 104
channel time limits, 56

Character-Oriented Communications, 157,6
check-write operation, 39,29

checkpoint, 43, viii, 4,70

166 Index

CLEAR control command (RAD Editor), 90
clock, 1,4

COC (see Character Oriented Communications)
COMMON, 72,77

completion codes, 54

compressed EBCDIC file, 13

compressed files, 8,39,8, 40

compressed records, 36
CONCORDANCE program 6, 17

connect line, 55

context switching, 42

control command diagnostics, 154

Control Command Interpreter (see Job Control Processor), 41

Control Function Processor, 96, 94
Control Panel Task, 62

Copy Routine, 97

COPY control command (Utility), 99
core memory allocation, 118,117
core space requirements, 160
counter interrupt locations, 147

CP key-in, 24

cross-reference listing, 6,112

D debug command, 136

DTMMDD key-in, 24

data chaining, 31,56

data files, 4,3, 84

DB key-in, 24

DE key-in, 24

Debug, 135, 6

Debug commands, 136

Debug error messages, 140

Debug expansion, 163

Debug insertion structure, 164

Debug snapshot calling sequence, 165
DEF/REF file, 84

DEFINE control command (Monitor), 13
DELETE control command (RAD Editor), 87
DELETE control command (Utility), 103, 105
device equivalence, 57

device name, 122, viii

device unit number, 10

device order bytes, 59

device positioning, 44

device type name, 122,56

device type table, 121

device unit number, 11, viii, 112
device-file number, 10, viii, 11,12, 126
DF key-in, 24

disk pack, viii

disconnect line, 55

displacement chain resolution, 145
Divide instruction, 62

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed

in numerical sequence.

DM key-in, 24

DR key~in, 25

DUMP control command (RAD Editor), 89
DUMP control command (Utility), 100
Dump Routine, 99

E

E debug command, 139

EBCDIC file, 84

elapsed time, 4

end action, 56

END control command (RAD Editor), 90
END control command (Overlay Loader), 82
END control command (Utility), 97
end module, 143

end-of-file mark, 16

EOD control command (Monitor), 13
EOM key-in, 24,35

EOT, 39,40

Extended Symbol, 6, 17

external interrupts, 63, viii,71

f

F key-in, 25

FBACK control command (Monitor), 13
FBACK control command (Utility), 96
FCOPY control command (RAD Editor), 88
FG key=-in, 25,14

file allocation, 87

File Control Table (FCT), 121

file management, 59

file name, 4,ix, 11

file positioning, 13

FIN control command (Monitor), 13
FL oplb key-in, 25

floating accumulator, 147

floating flags, 147

floating=point accumulator, 8
foreground coding procedures, 71
foreground initialization, 66
foreground load, 63

foreground mailbox, 60

foreground operational labels, 11
foreground priority levels, 68, 63,64
foreground programs, 2, ix

foreground tasks, 2,7, ix

foreground updates, 133

format byte, 38

FR key=in, 25

FSKIP control command (Monitor), 13
FSKIP control command (Utility), 98

GO file, 18,ix,15,74,112
granule, 58,ix,32,34,48,72

H key-in, 25

hardware requirements, 5

header word, 142

HEX control command (Monitor), 14
hexadecimal corrector cards, 159
High-speed Line Printer Handler, 117
HIO, 31

I debug command, 137

IDENT control command (Utility), 105
idle account, 4

INCLUDE control command (Overlay Loader), 81
inhibited interrupt, ix

Input/Output Task, 62

INSERT control command (Utility), 102, 103
integral IOP timeout, 147

Interrupt Switch, 24

I/O check, 31

I/O completion codes, 34

I/O Control Table, 121, ix

/O data tables, 31

I/O initiation, 56

I/O interrupt, 68

/O operations, 56,68

/O priority level, 68

/O recovery procedure, 20

I/O system hardware, 29

I/O termination, 41

IOCD, 3,29, 31

IOCS pointers and constants, 147

IOP watchdog timeout, 61

J

JCP (see Job Control Processor)

job, 7

job accounting, 4

JOB control command (Monitor), 14
Job Control Processor, 9, 16,18
JOBC control command (Monitor), 14
job step, 8,9

K Debug command, 139
K:TCB key-in, 61

KEY ERROR message, 23 -
KP key~in, 25

L

LADD control command (RAD Editor), 88
Lar, dn, wp, key-in, 25
LB control command (Overlay Loader), 80

Index

167

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed

in numerical sequence.

LCOPY control command (RAD Editor), 89
LD control command (Overlay Loader), 80
LDELETE control command (RAD Editor), 89
LIB control command (Overlay Loader), 78
Library, 73

library creation, 133

library file sizes, 85,86

library files, 84,4

library load module, ix

library update, 133

LIMIT control command (Monitor), 14

line mode, 54

line status, 54

LIST control command (Utility), 102, 103
list mode, 102,103

load item, 142

load map, 75, ix

load module, 10, ix

load origin, 143

Loader error messages, 82

loading foreground, 63

logical device, ix

LREPLACE control command (RAD Editor), 88
LSQUEEZE control command (RAD Editor), 89

M Debug command, 139
M:ABORT, 41
M:ASSIGN, 48,27
M:CKREST, 43
M:CLOSE, 45,18, 27,38
M:COC, 53, 157
M:CTRL, 39, 18,27,33
M:DATIME, 40,27
M:DEFINE, 47,18,27
M:DKEYS, 46
M:DOW, 52,27
M:EXIT, 42,80
M:HEXIN, 42
M:INHEX, 43
M:IOEX, 27,117
M:LOAD, 44,27
M:OPEN, 45,27
M:OPFILE, 51

M:POP, 50

M:READ, 31,33
M:RES, 50

M:RSVP, 51,27
M:SAVE, 42,61,79
M:SEGLD, 44, 18
M:TERM, 41,18
M:WAIT, 46,27
M:WRITE, 36, 33
Machine Fault Task, 61
magnetic tape, 35, 56
Magnetic Tape Handler, 117
mailbox, 2, 60

map, 79,89

168 Index

MAP control command (RAD Editor), 89
Mar, dn key-in, 25

Master Dictionary, 121, 128

MD control command (Overlay Loader), 81
memory requirements, 160

MESSAGE control command (Monitor), 14
MESSAGE control command (Utility), 96
ML control command (Overlay Loader), 79
MODIFY control command (Utility), 102, 103
modify mode, 102,103

module directory file, 84

module file, 84

Monitor constants, 149

Monitor control commands, 9

Monitor messages, 60

Monitor service routines (see also M: entries), 27,1,8,28,74

Monitor tasks, 60

MP control command (Overlay Loader), 79
MS control command (Overlay Loader), 79
multiple precision mode, 62

Multiply instruction, 62

Multiply/Divide Exception Tasks, 62
Multiply/Divide simulation, 117

name definition, 144

New Line Code, 24

nonresident foreground, 8, 1
nonresident foreground programs, 60, ix

object module, 122,ix, 115

Object Module Editor, 100

object record format, 141

OLOAD control command, 77
OMEDIT control command (Utility), 101,95
operational label, 10,155

operational label table, ix

operator communication, 20

operator communication routine, 95
OPLBS control command (Utility), 98
OV file, 18,x,9,16,19,74, 112
OV:LOAD table, 9

Overlay Loader, 72,2,4,6,27,65,132
Overlay Loader control commands, 78
overlay program, x

override task, 61

P

P debug command, 139

packed-binary mode, 36

PAUSE control command (Monitor), 14
PAUSE control command (Utility), 96
permanent RAD files, 84,3,6

Note: For each entry in this index, the number of the most significant page is listed first, Any pages thereafter are listed

in numerical sequence.

PMD control command (Monitor), 14
physical device, x

postmortem dump (see PMD), x, 26
Power Off Routine, 147

Power Off Task, 61

Power On Routine, 147

Power On Task, 60

Power On/Off, 117

PRESTORE control command (Utility), 97
primary reference, x

priority level, 68,2, 56

processor control commands, 16
processor files, 3

program, 7

program deck examples, 112

profection switches, 5

Protection Violation Task, 62

PUBLIB control command (Overlay Loader), 82
Public Library, 82,4,72,113,115
PURGE control command (Monitor), 15

Q debug command, 139
Q name key-in, 25
Q:ROC subroutine, 27

R Debug command, 138

RAD allocation, 118, 6,59, 84, 124
RAD/disk pack areas, 3,x, 6,12,59,84,118
RAD Editor, 84,3,6

RAD Editor control commands, 86

RAD Editor error messages, 90

RAD files, 84,2

RAD space requirements, 160
RADEDIT control command, 86

random files, 58, 13, 36, 39, 57

RBACK control command (Monitor), 13
RBACK (Utility), 97

RBM Control Routine, 7

RBM Control Task, 8, 12,24, 60, 62
RBM size, 162

RBM Symbol Table, 131

RBM Zero Table, 147

RBMOYV file, 10

RCOC Initialization Routine, 55, 157
record header, 142

Read Automatic, 35,36

Read Backward, 36

Read Binary, 35, 36

Real-Time programming, 60

rebooting system, 133

RECEDIT control command (Utility), 103
Record Editor Routine, 102

record padding, 142

reentrant routines, 4, x

REL control command (Monitor), 15
relative location pointer, 144

relocatable binary program, 15

relocated load~-COMMON base, 143
relocated load-module base, 142

repeat load, 142

resident foreground, 7,60

resident foreground programs, 60, x

restart, 43

RESTORE control command (RAD Editor), 90
REWIND control command (Monitor), 15
REWIND (Utility), 97

rewind off-line, 40

rewind on-line, 40

ROOT control command (Overlay Loader), 80
root segment, 44,72

RSKIP control command (Monitor), 13
RSKIP control command (Utility), 97

S

S Debug command, 137

S key=~in, 25, 14

S:LOAD, 9

SAVE control command (RAD Editor), 90
secondary reference, 145

SEG control command (Overlay Loader), 81
segmented deck examples, 114
semiresident foreground program, 60, x
SEQEDIT control command (Utility), 105
SEQUENCE control command (Utility), 106
Sequence Editor, 104

sequential files, 57,15, 36, 39, 40

SIO, 31

skip mode, 12

snapshot dump, 135

source editing, 102

Source Input Interpreter, 94

space file backward, 40

space file forward, 40

space record backward, 40

space record forward, 40

SQUEEZE control command (RAD Editor), 90,84
squeezing, 84,89

standard constants, 148

Standard Object Language, 141

standard system constants and tables, 148, 1
start module, 143 '
SUPPRESS control command (Utility), 106
SY key-in, 26, 14

SYSGEN, 117,5

SYSGEN error messages, 129

SYSGEN options, 159

SYSLOAD, 128,117

SYSLOAD alarms, 133

system communication, 20

System Data Area Dictionary, 131

System Library files, 4,48

system load, 128, 117

Index

169

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed

in numberical sequence.

System Load Processor, 128
System Processor Dictionary, 131
system processors, 16, 113

system RAD, 118, 1

T

T Debug command, 138

T HRMN key-in, 26

task, 7

Task Control Block, 66, xi, 7,79, 147

TCB (see Task Control Block)

TCB control command (Overlay Loader), 79
TEMP control command (Monitor), 15
Temp Stack, 50, xi, 23, 27, 68, 69
temporary files, 13,18

TIO, 31,30

TRACKS control command (RAD Editor), 90

UL key-in, 26

unblocked file, 13

UNLOAD control command (Monitor), 16
UNLOAD control command (Utility), 97
unrelocated load, 142

unsolicited key~ins, 24

UPD option, 131

user data areas, 3,12

User Library files, 4

Utility control commands, 96

Utility error messages, 106

Utility program, 94,6

170 Index

Utility Program Control Routine, 95
Utility Program Executive, 94

L

VERIFY control command (Utility), 99

W key-in, 26

wait condition, 12

wait instruction, 46

WEOF control command (Monitor), 16
WEOF control command (Utility), 97
Write Binary, 38,39

Write Direct, 56, 63

Write EBCDIC, 38, 32

Write End-of-File, 37
Write~End-of-File (see WEOF)

X

X debug command, 138

X key=in, 26

XED control command (Monitor), 16
XEQ control command (Monitor), 16

z

zero table, 147
Z key-in, 26

	00000
	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	00011
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	xBack

